Problem on the Optimal Estimation of the Initial State of a Linear Singularly Perturbed System

被引:0
作者
Krakhotko, V. V. [1 ]
Razmyslovich, G. P. [1 ]
机构
[1] Belarusian State Univ, Minsk 220030, BELARUS
关键词
D O I
10.1134/S0012266122090130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method for solving the problem of a posteriori estimation of the initial state of a linear singularly perturbed dynamical system is proposed.
引用
收藏
页码:1287 / 1289
页数:3
相关论文
共 50 条
[41]   Asymptotic estimates of the solution of a singularly perturbed boundary value problem with an initial jump for linear differential equations [J].
Kasymov, KA ;
Nurgabyl, DN .
DIFFERENTIAL EQUATIONS, 2004, 40 (05) :641-651
[42]   Optimal sinusoidal disturbances rejection for singularly perturbed linear systems [J].
Zhang, BL ;
Tang, GY .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 :991-998
[43]   An occupational measure solution to a singularly perturbed optimal control problem [J].
Artstein, Z .
CONTROL AND CYBERNETICS, 2002, 31 (03) :623-642
[44]   Optimal control of linear nonstandard singularly perturbed discrete systems [J].
Lim, MT ;
Kang, CG ;
Kim, BS .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2002, 9 (02) :163-174
[45]   Asymptotic Estimates of the Solution of a Singularly Perturbed Boundary Value Problem with an Initial Jump for Linear Differential Equations [J].
K. A. Kasymov ;
D. N. Nurgabyl .
Differential Equations, 2004, 40 :641-651
[46]   Optimal deterministic disturbances rejection for singularly perturbed linear systems [J].
Zhang Baolin Tang Gongyou Gao Dexin Coll of Information Science and Engineering Ocean Univ of China Qingdao PR China Dept of Information and Mathematics Sciences Jiliang Univ Hangzhou PR China Coll of Automation and Electronic Engineering Qingdao Univ of Science and Technology Qingdao PR China .
Journal of Systems Engineering and Electronics, 2006, (04) :824-828
[47]   Internal layer solution of singularly perturbed optimal control problem [J].
Wu Li-Meng ;
Ni Ming-Kang .
ACTA PHYSICA SINICA, 2012, 61 (08)
[49]   Asymptotic Solution of a Singularly Perturbed Optimal Problem with Integral Constraint [J].
Thi Hoai Nguyen .
Journal of Optimization Theory and Applications, 2021, 190 :931-950
[50]   THE LINEAR-QUADRATIC-GAUSSIAN PROBLEM FOR SINGULARLY PERTURBED SYSTEMS [J].
SINGH, RNP .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1982, 13 (01) :93-100