Problem on the Optimal Estimation of the Initial State of a Linear Singularly Perturbed System

被引:0
作者
Krakhotko, V. V. [1 ]
Razmyslovich, G. P. [1 ]
机构
[1] Belarusian State Univ, Minsk 220030, BELARUS
关键词
D O I
10.1134/S0012266122090130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method for solving the problem of a posteriori estimation of the initial state of a linear singularly perturbed dynamical system is proposed.
引用
收藏
页码:1287 / 1289
页数:3
相关论文
共 50 条
[21]   Linear-Quadratic Optimal Control Problem for Singularly Perturbed Systems with Small Delays [J].
Glizer, Valery Y. .
NONLINEAR ANALYSIS AND OPTIMIZATION II: OPTIMIZATION, 2010, 514 :155-188
[22]   Robust state estimation for singularly perturbed systems [J].
Yousfi, B. ;
Raissi, T. ;
Amairi, M. ;
Gucik-Derigny, D. ;
Aoun, M. .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (03) :566-579
[23]   Approximation of the optimal solution in the minimax problem of the control of a singularly perturbed quasilinear system [J].
Kremlov, AG .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1996, 34 (02) :116-126
[24]   The Problem of Optimal Control for Singularly Perturbed System with Delay with Integral Quadratic Constraints [J].
Grebennikova, I. V. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (04) :3-11
[25]   DECOMPOSITION OF LINEAR OPTIMAL SINGULARLY PERTURBED SYSTEMS WITH AFTEREFFECT [J].
FRIDMAN, EM .
AUTOMATION AND REMOTE CONTROL, 1990, 51 (11) :1518-1527
[26]   Approximation of a singularly perturbed elliptic problem of optimal control [J].
Danilin, AR .
SBORNIK MATHEMATICS, 2000, 191 (9-10) :1421-1431
[27]   SINGULARLY PERTURBED AUTONOMOUS LINEAR-CONTROL PROBLEM [J].
CAMPBELL, SL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (01) :115-117
[28]   To the problem of stabilization of linear singularly perturbed systems with delay [J].
Kopeikina, TB .
DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (06) :22-27
[29]   Recovery problem for a singularly perturbed differential equation with an initial jump [J].
Nurgabyl, D. N. ;
Nazhim, S. S. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04) :125-135
[30]   Application of the small parameter method to the singularly perturbed linear-quadratic optimal control problem [J].
Kalinin, A. I. ;
Lavrinovich, L. I. .
AUTOMATION AND REMOTE CONTROL, 2016, 77 (05) :751-763