Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals

被引:141
作者
Lorente, Alba [1 ]
Boersma, K. Folkert [1 ,2 ]
Yu, Huan [3 ]
Doerner, Steffen [4 ]
Hilboll, Andreas [5 ,6 ]
Richter, Andreas [5 ]
Liu, Mengyao [7 ]
Lamsal, Lok N. [8 ]
Barkley, Michael [9 ]
De Smedt, Isabelle [3 ]
Van Roozendael, Michel [3 ]
Wang, Yang [4 ]
Wagner, Thomas [4 ]
Beirle, Steffen [4 ]
Lin, Jin-Tai [7 ]
Krotkov, Nickolay [8 ]
Stammes, Piet [2 ]
Wang, Ping [2 ]
Eskes, Henk J. [2 ]
Krol, Maarten [1 ,10 ,11 ]
机构
[1] Wageningen Univ, Meteorol & Air Qual Grp, Wageningen, Netherlands
[2] Royal Netherlands Meteorol Inst, De Bilt, Netherlands
[3] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium
[4] MPI C, Mainz, Germany
[5] Univ Bremen, Inst Environm Phys IUP UB, Bremen, Germany
[6] Univ Bremen, MARUM Ctr Marine Environm Sci, Bremen, Germany
[7] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China
[8] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA
[9] Univ Leicester, Dept Phys & Astron, EOS Grp, Leicester, Leics, England
[10] Netherlands Inst Space Res SRON, Utrecht, Netherlands
[11] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands
关键词
TROPOSPHERIC NITROGEN-DIOXIDE; CHEMISTRY TRANSPORT; MULTIMODEL ENSEMBLE; OMI; ALGORITHM; EMISSIONS; GOME; AEROSOLS; IMPACT; SPACE;
D O I
10.5194/amt-10-759-2017
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude re-solved AMFs from different RTMs (to within 3%), and in the tropospheric AMFs (to within 6%) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42% over polluted regions and 31% over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40% depending on cloud fraction and cloud pressure, and 11% on average) even for low cloud fractions (< 0.2) and the choice of aerosol correction introduces an average uncertainty of 50% for situations with high pollution and high aerosol loading. Our work shows that structural uncertainty in AMF calculations is significant and that it is mainly caused by the assumptions and choices made to represent the state of the atmosphere. In order to decide which approach and which ancillary data are best for AMF calculations, we call for well-designed validation exercises focusing on polluted conditions in which AMF structural uncertainty has the highest impact on NO2 and HCHO retrievals.
引用
收藏
页码:759 / 782
页数:24
相关论文
共 67 条
[1]   Cloud pressure retrieval using the O2-O2 absorption band at 477 nm -: art. no. D05204 [J].
Acarreta, JR ;
De Haan, JF ;
Stammes, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D5)
[2]  
Anderson G. P., 1986, ENV RES PAPERS OPT P
[3]   Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns [J].
Barkley, Michael P. ;
De Smedt, Isabelle ;
Van Roozendael, Michel ;
Kurosu, Thomas P. ;
Chance, Kelly ;
Arneth, Almut ;
Hagberg, Daniel ;
Guenther, Alex ;
Paulot, Fabien ;
Marais, Eloise ;
Mao, Jingqiu .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (12) :6849-6868
[4]   Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates [J].
Barkley, Michael P. ;
Kurosu, Thomas P. ;
Chance, Kelly ;
De Smedt, Isabelle ;
Van Roozendael, Michel ;
Arneth, Almut ;
Hagberg, Daniel ;
Guenther, Alex .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[5]   Can a "state of the art" chemistry transport model simulate Amazonian tropospheric chemistry? [J].
Barkley, Michael P. ;
Palmer, Paul I. ;
Ganzeveld, Laurens ;
Arneth, Almut ;
Hagberg, Daniel ;
Karl, Thomas ;
Guenther, Alex ;
Paulot, Fabien ;
Wennberg, Paul O. ;
Mao, Jingqiu ;
Kurosu, Thomas P. ;
Chance, Kelly ;
Mueller, J. -F. ;
De Smedt, Isabelle ;
Van Roozendael, Michel ;
Chen, Dan ;
Wang, Yuxuan ;
Yantosca, Robert M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[6]   Direct satellite observation of lightning-produced NOx [J].
Beirle, S. ;
Huntrieser, H. ;
Wagner, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (22) :10965-10986
[7]   The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution [J].
Beirle, Steffen ;
Hoermann, Christoph ;
Joeckel, Patrick ;
Liu, Song ;
de Vries, Marloes Penning ;
Pozzer, Andrea ;
Sihler, Holger ;
Valks, Pieter ;
Wagner, Thomas .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (07) :2753-2779
[8]   Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals [J].
Boersma, K. F. ;
Vinken, G. C. M. ;
Eskes, H. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (02) :875-898
[9]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[10]  
Boersma K. F., 2002, OMI ALOGIRTHM THEORE