THE BRAUER SEMIGROUP OF A GROUPOID AND A SYMMETRIC IMPRIMITIVITY THEOREM

被引:0
作者
Brown, Jonathan Henry [1 ]
Goehle, Geoff [2 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Western Carolina Univ, Math & Comp Sci Dept, Cullowhee, NC 28723 USA
关键词
Groupoids; crossed products; equivalence theorem; symmetric imprimitivity theorem; C-STAR-ALGEBRAS; PROPER ACTIONS; CROSSED-PRODUCTS; EQUIVALENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define a monoid called the Brauer semigroup for a locally compact Hausdorff groupoid E whose elements consist of Morita equivalence classes of E-dynamical systems. This construction generalizes both the equivariant Brauer semigroup for transformation groups and the Brauer group for a groupoid. We show that groupoid equivalence induces an isomorphism of Brauer semigroups and that this isomorphism preserves the Morita equivalence classes of the respective crossed products, thus generalizing Raeburn's symmetric imprimitivity theorem.
引用
收藏
页码:1943 / 1972
页数:30
相关论文
共 27 条
  • [1] Anantharaman-Delaroche C., 2000, AMENABLE GROUPOIDS, V36
  • [2] Deformations of Hopf C*-algebras
    Blanchard, E
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (01): : 141 - 215
  • [3] Brown Jonathan H., TO APPEAR IN THE HOU
  • [4] Brown JH, 2012, J OPERAT THEOR, V67, P437
  • [5] An equivariant Brauer group and actions of groups on C*-algebras
    Crocker, D
    Kumjian, A
    Raeburn, I
    Williams, DP
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (01) : 151 - 184
  • [6] Crossed products by C0(X)-actions
    Echterhoff, S
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (01) : 113 - 151
  • [7] Fell J. M. G., 1988, PURE APPL MATH, V125
  • [8] Folland G B., 1992, Fourier Analysis and its Applications, The Wadsworth Brooks/Cole Mathematics Series, V1st edn
  • [9] Locally Unitary Groupoid Crossed Products
    Goehle, Geoff
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 411 - 441
  • [10] Goehle G, 2010, HOUSTON J MATH, V36, P567