The Laplace method for Gaussian measures and integrals in Banach spaces

被引:0
|
作者
Fatalov, V. R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 117234, Russia
基金
俄罗斯基础研究基金会;
关键词
ASYMPTOTIC ANALYSIS; WIENER INTEGRALS; MINIMUM POINTS;
D O I
10.1134/S0032946013040066
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove results on tight asymptotics of probabilities and integrals of the form P-A(uD) and J(u)(D) = integral(D) f(x)exp{-u(2)F(x)}dP(A)(ux), where P-A is a Gaussian measure in an infinite-dimensional Banach space B, D = {x is an element of B: Q(x) >= 0} is a Borel set in B, Q and F are continuous functions which are smooth in neighborhoods of minimum points of the rate function, f is a continuous real-valued function, and u ->infinity is a large parameter.
引用
收藏
页码:354 / 374
页数:21
相关论文
共 50 条
  • [21] ON GAUSSIAN APPROXIMATION IN BANACH-SPACES
    BOROVSKIKH, YV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (04) : 838 - 839
  • [22] A Gaussian average property of Banach spaces
    Casazza, PG
    Nielsen, NJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (04) : 559 - 576
  • [23] GAUSSIAN SEMIGROUPS ON HOMOGENEOUS BANACH SPACES
    Duchon, Miloslav
    REAL FUNCTIONS '07: TOPOLOGY, MEASURES, INTEGRATION AND HARMONIC ANALYSIS, 2009, 42 : 191 - 197
  • [24] Moments of Gaussian chaoses in Banach spaces
    Adamczak, Radoslaw
    Latala, Rafal
    Meller, Rafal
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26 : 1 - 36
  • [26] PROPERTY OF GAUSSIAN DISTRIBUTIONS IN BANACH SPACES
    VAKHANIA, NN
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 1973, 35 (MAR): : 23 - 28
  • [27] REPRESENTATIONS OF WEAK AND STRONG INTEGRALS IN BANACH SPACES
    BROOKS, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 667 - &
  • [28] A convergent and asymptotic Laplace method for integrals
    Lopez, Jose L.
    Pagola, Pedro J.
    Palacios, Pablo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 422
  • [29] A generalization of the Laplace's method for integrals
    Lopez, Jose L.
    Pagola, Pedro J.
    Palacios, Pablo
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 483
  • [30] GAUSSIAN MEASURES ON ORLICZ SPACES
    LAWNICZAK, AT
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1985, 3 (03) : 349 - 361