Assembly of direct-electron-transfer-type bioelectrodes with high performance

被引:20
作者
Sakai, Kento [1 ]
Xia, Hong-qi [1 ]
Kitazumi, Yuki [1 ]
Shirai, Osamu [1 ]
Kano, Kenji [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Sakyo Ku, Kyoto 6068502, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Direct-electron-transfer-type bioelectrocatalysis; Enzyme orientation: mesoporous structures; Microporous structures; Electrostatic interaction; TRANSFER-TYPE BIOELECTROCATALYSIS; ENZYMATIC BIOFUEL CELLS; MGO-TEMPLATED CARBON; BILIRUBIN OXIDASE; DIRECT ELECTROCHEMISTRY; FUEL-CELLS; MYROTHECIUM-VERRUCARIA; NANOPOROUS GOLD; REDOX ENZYMES; DOUBLE-LAYER;
D O I
10.1016/j.electacta.2018.03.163
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Direct electron transfer bioelectrocatalysis is an essential type of reaction for the development of bioelectrochemical devices such as biosensors, biofuel cells, and bioreactors. In this work, we performed several modifications of mesoporous electrodes to improve the heterogeneous electron transfer kinetics and the orientation of three different enzymes: bilirubin oxidase from Myrothecium verrucaria, hydrogenase from Desulfovibrio vulgaris Miyazaki F, and tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1. The results are discussed based on the curvature effects of mesoporous structures, the edge effect of the diffuse double layer around microporous structures, and the electrostatic interactions between enzymes and electrodes. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 70 条
[61]   Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis [J].
Sugimoto, Yu ;
Kitazumi, Yuki ;
Tsujimura, Seiya ;
Shirai, Osamu ;
Yamamoto, Masahiro ;
Kano, Kenji .
BIOSENSORS & BIOELECTRONICS, 2015, 63 :138-144
[62]  
Tsujimura S., 2004, ELECTROCHEMISTRY, V6, P72
[63]   Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes [J].
Tsujimura, Seiya ;
Suraniti, Emmanuel ;
Durand, Fabien ;
Mano, Nicolas .
ELECTROCHIMICA ACTA, 2014, 117 :263-267
[64]   Investigating and exploiting the electrocatalytic properties of hydrogenases [J].
Vincent, Kylie A. ;
Parkin, Alison ;
Armstrong, Fraser A. .
CHEMICAL REVIEWS, 2007, 107 (10) :4366-4413
[65]   Electrochemical glucose biosensors [J].
Wang, Joseph .
CHEMICAL REVIEWS, 2008, 108 (02) :814-825
[66]   Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes [J].
Wang, Xiaoju ;
Falk, Magnus ;
Ortiz, Roberto ;
Matsumura, Hirotoshi ;
Bobacka, Johan ;
Ludwig, Roland ;
Bergelin, Mikael ;
Gorton, Lo ;
Shleev, Sergey .
BIOSENSORS & BIOELECTRONICS, 2012, 31 (01) :219-225
[67]   Native glucose oxidase does not undergo direct electron transfer [J].
Wilson, George S. .
BIOSENSORS & BIOELECTRONICS, 2016, 82 :VII-VIII
[68]   Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis [J].
Xia, Hong-qi ;
Kitazumi, Yuki ;
Shirai, Osamu ;
Ozawa, Hiroki ;
Onizuka, Maki ;
Komukai, Takuji ;
Kano, Kenji .
BIOELECTROCHEMISTRY, 2017, 118 :70-74
[69]   Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on negatively charged aromatic compound-modified carbon electrode [J].
Xia, Hong-qi ;
Kitazumi, Yuki ;
Shirai, Osamu ;
Kano, Kenji .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 763 :104-109
[70]   An overview of dealloyed nanoporous gold in bioelectrochemistry [J].
Xiao, Xinxin ;
Si, Pengchao ;
Magner, Edmond .
BIOELECTROCHEMISTRY, 2016, 109 :117-126