A practical formula for computing optimal parameters in the HSS iteration methods

被引:113
作者
Huang, Yu-Mei [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国博士后科学基金;
关键词
The HSS iteration methods; Optimal parameter; Cubic equation; Matrix trace; SADDLE-POINT PROBLEMS; HERMITIAN SPLITTING METHODS; DEFINITE LINEAR-SYSTEMS; PRECONDITIONER; MATRICES;
D O I
10.1016/j.cam.2013.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the HSS iteration methods proposed by Bai, Golub and Ng [Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM. J. Matrix Anal. Appl. 24 (2003) 603-626], the determination of the optimal parameter is a tough task when solving a non-Hermitian positive definite linear system. In this paper, a new and simple strategy for obtaining the optimal parameter is proposed, which computes the optimal parameter by solving a cubic polynomial equation. The coefficients of this polynomial are determined by several traces of some matrices related to the symmetric and skew-symmetric parts of the coefficient matrix of the real linear system. Numerical experiments show that our new strategy is very effective for approximating the optimal parameter in the HSS iteration methods as it leads to fast convergence of the method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 17 条
[1]   On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Ng, Michael K. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) :319-335
[2]   Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Li, Chi-Kwong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :583-603
[3]   Optimal parameters in the HSS-like methods for saddle-point problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (06) :447-479
[4]   Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Lu, LZ ;
Yin, JF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :844-863
[5]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[6]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[7]   Preconditioned iterative methods for weighted Toeplitz least squares problems [J].
Benzi, M ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) :1106-1124
[8]   A preconditioner for generalized saddle point problems [J].
Benzi, M ;
Golub, GH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :20-41
[9]  
Bertaccini D, 2005, NUMER MATH, V99, P441, DOI 10.1007/s00211 -004-0574-1
[10]  
Chan LC, 2006, NUMER MATH-THEORY ME, V15, P1