W2,p(.) -regularity for elliptic equations in nondivergence form with BMO coefficients

被引:0
作者
Byun, Sun-Sig [1 ,2 ]
Lee, Mikyoung [1 ]
Ok, Jihoon [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
FINITE-ELEMENT APPROXIMATION; VARIABLE EXPONENT; FUNCTIONALS; OPERATORS; STOKES; VMO;
D O I
10.1007/s00208-015-1194-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an optimal -estimate to the Dirichlet problem for an elliptic equation in nondivergence form with discontinuous coefficients on a bounded domain for every variable exponent with log-Holder continuity. The matrix of the coefficients is assumed to have a small BMO semi-norm, depending on the exponent, the boundary of the domain, and the matrix itself.
引用
收藏
页码:1023 / 1052
页数:30
相关论文
共 33 条
  • [1] Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
  • [2] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [3] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [4] [Anonymous], 1994, Homogenization of Differential Operators and Integral Functionals
  • [5] [Anonymous], RICERCHE MAT
  • [6] [Anonymous], 1979, FUNDAMENTAL PRINCIPL
  • [7] [Anonymous], 2000, MATH RES
  • [8] [Anonymous], SPRINGER LECT NOTES
  • [9] Calderon-Zygmund estimates for parabolic p(x, t)-Laplacian systems
    Baroni, Paolo
    Boegelein, Verena
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1355 - 1386
  • [10] Holder estimates for parabolic p(x, t)-Laplacian systems
    Boegelein, Verena
    Duzaar, Frank
    [J]. MATHEMATISCHE ANNALEN, 2012, 354 (03) : 907 - 938