Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model

被引:96
作者
Osuri, Krishna K. [1 ]
Mohanty, U. C. [1 ]
Routray, A. [2 ]
Mohapatra, M. [3 ]
Niyogi, Dev [4 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Earth Ocean & Climate Sci, Bhubaneswar 751007, Orissa, India
[2] Natl Ctr Medium Range Weather Forecasting, Noida, India
[3] Indian Meteorol Dept, New Delhi, India
[4] Purdue Univ, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Tropical cyclones; Numerical weather prediction; forecasting; RESOLUTION; FORECAST; INITIALIZATION; CONVECTION; INTENSITY; IMPACT; SCHEME; EVENT;
D O I
10.1175/JAMC-D-12-0313.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The performance of the Advanced Research version of the Weather Research and Forecasting (ARW) model in real-time prediction of tropical cyclones (TCs) over the north Indian Ocean (NIO) at 27-km resolution is evaluated on the basis of 100 forecasts for 17 TCs during 2007-11. The analyses are carried out with respect to 1) basins of formation, 2) straight-moving and recurving TCs, 3) TC intensity at model initialization, and 4) season of occurrence. The impact of high resolution (18 and 9 km) on TC prediction is also studied. Model results at 27-km resolution indicate that the mean track forecast errors (skill with reference to persistence track) over the NIO were found to vary from 113 to 375 km (7%-51%) for a 12-72-h forecast. The model showed a right/eastward and slow bias in TC movement. The model is more skillful in track prediction when initialized at the intensity stage of severe cyclone or greater than at the intensity stage of cyclone or lower. The model is more efficient in predicting landfall location than landfall time. The higher-resolution (18 and 9 km) predictions yield an improvement in mean track error for the NIO Basin by about 4%-10% and 8%-24%, respectively. The 9-km predictions were found to be more accurate for recurving TC track predictions by similar to 13%-28% and 5%-15% when compared with the 27- and 18-km runs, respectively. The 9-km runs improve the intensity prediction by 15%-40% over the 18-km predictions. This study highlights the capabilities of the operational ARW model over the Indian monsoon region and the continued need for operational forecasts from high-resolution models.
引用
收藏
页码:2476 / 2492
页数:17
相关论文
共 40 条
  • [1] Determination of tropical cyclone center by using TRMM Microwave Imager data
    Ahn, MH
    Seo, YK
    Park, HS
    Suh, AS
    Kwon, HJ
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (09) : 15 - 1
  • [2] [Anonymous], 2005, A Description of the Advanced Research WRF Version 2
  • [3] A Dynamical Statistical Model for Prediction of a Tropical Cyclone
    Bhowmik, S. K. Roy
    Kotal, S. D.
    [J]. MARINE GEODESY, 2010, 33 (04) : 412 - 423
  • [4] Brousseau P, 2008, HIRLAM TECHN REPORT, V68, P23
  • [5] Prediction of landfalling hurricanes with the Advanced Hurricane WRF model
    Davis, Christopher
    Wang, Wei
    Chen, Shuyi S.
    Chen, Yongsheng
    Corbosiero, Kristen
    DeMaria, Mark
    Dudhia, Jimy
    Holland, Greg
    Klemp, Joe
    Michalakes, John
    Reeves, Heather
    Rotunno, Richard
    Snyder, Chris
    Xiao, Qingnong
    [J]. MONTHLY WEATHER REVIEW, 2008, 136 (06) : 1990 - 2005
  • [6] Mesoscale characteristics and prediction of an unusual extreme heavy precipitation event over India using a high resolution mesoscale model
    Dodla, Venkata Bhaskar Rao
    Ratna, Satyaban Bishoyi
    [J]. ATMOSPHERIC RESEARCH, 2010, 95 (2-3) : 255 - 269
  • [7] FIORINO M, 1993, WEATHER FORECAST, V8, P3, DOI 10.1175/1520-0434(1993)008<0003:AEOTRT>2.0.CO
  • [8] 2
  • [9] Gopalakrishnan S. G., 2006, 27 C HURR TROP MET M, V7A, P3
  • [10] Toward Improving High-Resolution Numerical Hurricane Forecasting: Influence of Model Horizontal Grid Resolution, Initialization, and Physics
    Gopalakrishnan, Sundararaman G.
    Goldenberg, Stanley
    Quirino, Thiago
    Zhang, Xuejin
    Marks, Frank, Jr.
    Yeh, Kao-San
    Atlas, Robert
    Tallapragada, Vijay
    [J]. WEATHER AND FORECASTING, 2012, 27 (03) : 647 - 666