Computing with real Lie algebras: Real forms, Cartan decompositions, and Cartan subalgebras

被引:13
作者
Dietrich, Heiko [1 ]
Faccin, Paolo [2 ]
de Graaf, Willem A. [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Trento, Dept Math, Povo, Trento, Italy
关键词
Real simple Lie algebras; Cartan decompositions; Cartan subalgebras;
D O I
10.1016/j.jsc.2013.05.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe algorithms for performing various tasks related to real simple Lie algebras. These algorithms form the basis of our software package CoReLG, written in the language of the computer algebra system GAP4. First, we describe how to efficiently construct real simple Lie algebras up to isomorphism. Second, we consider a real semisimple Lie algebra g. We provide an algorithm for constructing a maximally (non-)compact Cartan subalgebra of g; this is based on the theory of Cayley transforms. We also describe the construction of a Cartan decomposition g = t circle plus p. Using these results, we provide an algorithm to construct all Cartan subalgebras of g up to conjugacy; this is a constructive version of a classification theorem due to Sugiura. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 24 条
[1]  
Adams J., 2012, Unitary representations of real reductive groups
[2]  
[Anonymous], 2018, GAP GROUPS ALGORITHM
[3]  
Barut A O., 1986, Theory of Group Representations and Applications
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Bourbaki N., 1981, Groupes et algebres de Lie
[6]  
Carter R., 1972, Pure and Applied Mathematics
[7]  
Cohen A.M., 1992, LIE PACKAGE LIE GROU
[8]  
de Graaf W. A., 2000, NH MATH LIB, V56
[9]   Computing Cartan subalgebras of Lie algebras [J].
DeGraaf, W ;
Ivanyos, G ;
Ronyai, L .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) :339-349
[10]  
Dietrich H., PACIFIC J M IN PRESS