Elevated light and nutrients alter the nutritional quality of stream periphyton

被引:51
作者
Cashman, Matthew J. [1 ]
Wehr, John D.
Truhn, Kam
机构
[1] Fordham Univ, Louis Calder Ctr, Biol Field Stn, Armonk, NY 10504 USA
基金
美国国家科学基金会;
关键词
fatty acids; food quality; light; nutrients; periphyton; UNSATURATED FATTY-ACIDS; REDUCES FOOD QUALITY; SESTON LIPIDS; ZOOPLANKTON; LIMITATION; GROWTH; PHOSPHORUS; IRRADIANCE; DAPHNIA; BIOMASS;
D O I
10.1111/fwb.12142
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The biochemical composition of primary food resources may affect secondary production, growth, reproduction and other physiological responses in consumers and may be an important driver of food-web dynamics. Changes in land use, riparian clearing and non-point nutrient inputs to streams have the potential to alter the biochemical composition of periphyton, and characterising this relationship may be critical to understand the processes by which environmental change can affect food webs and ecosystem function. We conducted a manipulative, in situ experiment to examine the effect of light and nutrient availability on stream periphyton biomass, nutrient content, stoichiometry and fatty acid composition. Greater light increased periphyton biomass [chl-a, ash-free dry mass (AFDM)], periphyton carbon concentrations and monounsaturated fatty acids (MUFAs), but decreased saturated fatty acids (SAFAs). Greater light availability also increased levels of <20C polyunsaturated fatty acids (PUFAs), but decreased quantities of several long-chain (20-22 C), highly unsaturated fatty acids (HUFAs). Nutrient (+N, +P) addition had no significant effect on periphyton biomass in the study streams, but did increase periphyton carbon content. For fatty acids, despite non-significant effects on periphyton biomass, nutrient additions resulted in an increased ratio of SAFA to PUFA, greater concentrations of stearidonic acid (18:43) and near-significant increases in -linolenic acid (18:33). Nutrient additions also resulted in decreased quantities of the physiologically important docosahexaenoic acid (DHA; 22:63) and increased the ratio of omega-3 to omega-6 fatty acids. An interaction between nutrient addition and greater light also resulted in decreased percentages of another physiologically important fatty acid, eicosapentaenoic acid (EPA; 20:53). Results from this study suggest that increased light and nutrients, a condition common in urban and agricultural catchments, would increase 18C PUFA intermediates that would be available in periphyton food sources, but decrease the availability of essential 20-22C HUFAs. If stream consumers are unable to elongate PUFAs into essential HUFAs, there may be important effects on food webs, including shifts by invertebrate consumers from herbivory to omnivory or carnivory, or changes in the species composition of aquatic consumers. Our results demonstrate that fatty acid measures were more sensitive to changes in light and nutrient conditions than more traditional measures of biomass, nutrient content and stoichiometry. We recommend routine measurement of fatty acid content in monitoring the effect of changing environmental conditions in rivers and streams, particularly studies on food quality and ecosystem health.
引用
收藏
页码:1447 / 1457
页数:11
相关论文
共 53 条
[1]   FATTY-ACID CONTENT AND CHEMICAL-COMPOSITION OF FRESH-WATER MICROALGAE [J].
AHLGREN, G ;
GUSTAFSSON, IB ;
BOBERG, M .
JOURNAL OF PHYCOLOGY, 1992, 28 (01) :37-50
[2]  
Ahlgren G, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P147, DOI 10.1007/978-0-387-89366-2_7
[3]   Landscapes and riverscapes: The influence of land use on stream ecosystems [J].
Allan, JD .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2004, 35 :257-284
[4]  
Arar E. J., 1997, 4460 USEPA
[5]   Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis [J].
Arendt, KE ;
Jónasdóttir, SH ;
Hansen, PJ ;
Gärtner, S .
MARINE BIOLOGY, 2005, 146 (03) :513-530
[6]  
Arts MT, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P237, DOI 10.1007/978-0-387-89366-2_10
[7]   EFFECTS OF OVERHEAD CANOPY ON MACROINVERTEBRATE PRODUCTION IN A UTAH STREAM [J].
BEHMER, DJ ;
HAWKINS, CP .
FRESHWATER BIOLOGY, 1986, 16 (03) :287-300
[9]   Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production [J].
Brett, Michael T. ;
Kainz, Martin J. ;
Taipale, Sami J. ;
Seshan, Hari .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (50) :21197-21201
[10]   The role of highly unsaturated fatty acids in aquatic food web processes [J].
Brett, MT ;
Muller-Navarra, DC .
FRESHWATER BIOLOGY, 1997, 38 (03) :483-499