The Berlekamp-Massey algorithm revisited

被引:21
作者
Atti, NB [1 ]
Diaz-Toca, GM
Lombardi, H
机构
[1] Univ Murcia, Dept Matemat Aplicada, E-30001 Murcia, Spain
[2] Univ Franche Comte, CNRS, Equipe Math,UMR 6623, UFR Sci & Tech, F-25030 Besancon, France
关键词
Berlekamp-Massey algorithm; linearly recurrent sequences;
D O I
10.1007/s00200-005-0190-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a slight modification of the Berlekamp-Massey Algorithm for obtaining the minimal polynomial of a given linearly recurrent sequence. Such a modification enables to explain it in a simpler way and to adapt it to lazy evaluation.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 10 条
[1]  
Berlekamp E. R., 1968, ALGEBRAIC CODING THE
[2]  
CHENG U, 1984, IEEE T INFORM THEORY, V30, P541, DOI 10.1109/TIT.1984.1056906
[3]   ON THE EQUIVALENCE BETWEEN BERLEKAMP AND EUCLIDS ALGORITHMS [J].
DORNSTETTER, JL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (03) :428-431
[4]   A SIMPLE HANKEL INTERPRETATION OF THE BERLEKAMP-MASSEY ALGORITHM [J].
JONCKHEERE, E ;
MA, CW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 125 :65-76
[5]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[6]  
MILLS WH, 1975, MATH COMPUT, V29, P173, DOI 10.1090/S0025-5718-1975-0369276-7
[7]   New techniques for the computation of linear recurrence coefficients [J].
Pan, VY .
FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (01) :93-118
[8]  
Shoup V., 2005, COMPUTATIONAL INTRO
[9]   METHOD FOR SOLVING KEY EQUATION FOR DECODING GOPPA CODES [J].
SUGIYAMA, Y ;
KASAHARA, M ;
HIRASAWA, S ;
NAMEKAWA, T .
INFORMATION AND CONTROL, 1975, 27 (01) :87-99
[10]  
WELCH LR, 1979, IEEE T INFORM THEORY, V25, P18