Detecting Keratoconus From Corneal Imaging Data Using Machine Learning

被引:25
|
作者
Lavric, Alexandru [1 ]
Popa, Valentin [1 ,2 ]
Takahashi, Hidenori [3 ]
Yousefi, Siamak [4 ,5 ]
机构
[1] Stefan Cel Mare Univ, Fac Elect Engn & Comp Sci, Suceava 720229, Romania
[2] Stefan Cel Mare Univ, MANSID Integrated Ctr, Suceava 720229, Romania
[3] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290498, Japan
[4] Univ Tennessee, Ctr Hlth Sci, Dept Ophthalmol, Memphis, TN 38163 USA
[5] Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Machine learning; Machine learning algorithms; Diseases; Computational modeling; Cornea; Surfaces; Imaging; Keratoconus; machine learning; corneal imaging data; data mining; support vector machine;
D O I
10.1109/ACCESS.2020.3016060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keratoconus affects approximately one in 2,000 individuals worldwide. It is typically associated with the decrease in visual acuity. Given its wide prevalence, there is an unmet need for the development of new tools that can diagnose the disease at an early stage in order to prevent disease progression and vision loss. The aim of this study is to develop and test a machine learning algorithm that can detect keratoconus at early stages. We applied several machine learning algorithms to detect keratoconus and then tested the algorithms using real world medical data, including corneal topography, elevation, and pachymetry parameters collected from OCT-based topography instruments from several corneal clinics in Japan. We implemented 25 different machine learning models in Matlab and achieved a range of 62% to 94.0% accuracy. The highest accuracy level of 94% was obtained by a support vector machine (SVM) algorithm using a subset of eight corneal parameters with the highest discriminating power. The proposed model may aid physicians in assessing corneal status and detecting keratoconus, which is otherwise challenging through subjective evaluations, particularly at the preclinical and early stages of the disease. The algorithm can be integrated into corneal imaging devices or used as a stand-alone-software for cornea assessment and detecting early stage keratoconus.
引用
收藏
页码:149113 / 149121
页数:9
相关论文
共 50 条
  • [21] Machine Learning Using a Simple Feature for Detecting Multiple Types of Events From PMU Data
    Dokic, Tatjana
    Baembitov, Rashid
    Hai, Ameen Abdel
    Cheng, Zheyuan
    Hu, Yi
    Kezunovic, Mladen
    Obradovic, Zoran
    2022 INTERNATIONAL CONFERENCE ON SMART GRID SYNCHRONIZED MEASUREMENTS AND ANALYTICS - SGSMA 2022, 2022,
  • [22] Detecting Adverse Drug Reaction with Data Mining And Predicting its Severity With Machine Learning
    Islam, Tanvir
    Hussain, Nadib
    Islam, Samiul
    Chakrabarty, Amitabha
    2018 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2018,
  • [23] Detecting BGP Anomalies Using Machine Learning Techniques
    Ding, Qingye
    Li, Zhida
    Batta, Prerna
    Trajkovic, Ljiljana
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3352 - 3355
  • [24] Detecting Spongiosis in Stained Histopathological Specimen using Multispectral Imaging and Machine Learning
    Abeysekera, Sanush
    Ooi, Melanie Po-Leen
    Kuang, Ye Chow
    Tan, Chee Pin
    Hassan, Sharifah Syed
    2014 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2014, : 195 - 200
  • [25] Machine Learning for Detecting Data Exfiltration: A Review
    Sabir, Bushra
    Ullah, Faheem
    Babar, M. Ali
    Gaire, Raj
    ACM COMPUTING SURVEYS, 2022, 54 (03)
  • [26] Detecting Transformer Fault Types from Dissolved Gas Analysis Data Using Machine Learning Techniques
    Raghuraman, Rohan
    Darvishi, Atena
    PROCEEDINGS OF THE 2022 15TH IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS 2022), 2022,
  • [27] Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities
    Ce Shi
    Mengyi Wang
    Tiantian Zhu
    Ying Zhang
    Yufeng Ye
    Jun Jiang
    Sisi Chen
    Fan Lu
    Meixiao Shen
    Eye and Vision, 7
  • [28] Preserving Data Integrity and Detecting Toxic Recordings in Machine Learning using Blockchain
    Alaya, Bechir
    Moulahi, Tarek
    El Khediri, Salim
    Aladhadh, Suliman
    PROCEEDINGS 2024 IEEE 25TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM 2024, 2024, : 18 - 23
  • [29] Machine Learning Approaches for Detecting Tropical Cyclone Formation Using Satellite Data
    Kim, Minsang
    Park, Myung-Sook
    Im, Jungho
    Park, Seonyoung
    Lee, Myong-In
    REMOTE SENSING, 2019, 11 (10)
  • [30] Development and validation to predict visual acuity and keratometry two years after corneal crosslinking with progressive keratoconus by machine learning
    Liu, Yu
    Shen, Dan
    Wang, Hao-yu
    Qi, Meng-ying
    Zeng, Qing-yan
    FRONTIERS IN MEDICINE, 2023, 10