Stability Analysis of a Class of Nonlinear Fractional-Order Systems

被引:190
作者
Wen, Xiang-Jun [1 ]
Wu, Zheng-Mao [2 ]
Lu, Jun-Guo [2 ]
机构
[1] Guangxi Power Grid Corp, NNPSB, Nanning 530031, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
关键词
Chaos; fractional-order system; linear state feedback; nonlinear; stability;
D O I
10.1109/TCSII.2008.2002571
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a stability theorem of nonlinear fractional-order differential equations is proven theoretically by using the Gronwall-Bellman lemma. According to this theorem, the linear state feedback controller is introduced for stabilizing a class of nonlinear fractional-order systems. And, a new criterion is derived for designing the controller gains for stabilization, in which control parameters can be selected via the pole placement technique of the linear fractional-order control theory. Finally, the theoretical results are further substantiated by simulation results of the fractional-order chaotic Lorenz System with desired design requirements.
引用
收藏
页码:1178 / 1182
页数:5
相关论文
共 22 条
[1]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[2]  
[Anonymous], 1955, Higher transcendental functions, VIII
[3]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[4]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[5]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[7]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[8]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490
[9]  
Heaviside O., 1971, Electromagnetic Theory
[10]  
Hilfer R, 2001, APPL FRACTIONAL CALC