Design Principles for Central Pattern Generators With Preset Rhythms

被引:26
作者
Lodi, Matteo [1 ]
Shilnikov, Andrey L. [2 ]
Storace, Marco [1 ]
机构
[1] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architec, I-16145 Genoa, Italy
[2] Georgia State Univ, Neurosci Inst, Dept Math & Stat, Atlanta, GA 30303 USA
基金
俄罗斯科学基金会;
关键词
Mice; Synapses; Legged locomotion; Biological system modeling; Mathematical model; Cells (biology); Bifurcation analysis; central pattern generators; neuronal models; parameter optimization; LOCOMOTOR SPEED; ORGANIZATION; CIRCUITS; MODEL; INTERNEURONS; OSCILLATOR; STABILITY; SYSTEM;
D O I
10.1109/TNNLS.2019.2945637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article is concerned with the design of synthetic central pattern generators (CPGs). Biological CPGs are neural circuits that determine a variety of rhythmic activities, including locomotion, in animals. A synthetic CPG is a network of dynamical elements (here called cells) properly coupled by various synapses to emulate rhythms produced by a biological CPG. We focus on CPGs for locomotion of quadrupeds and present our design approach, based on the principles of nonlinear dynamics, bifurcation theory, and parameter optimization. This approach lets us design the synthetic CPG with a set of desired rhythms and switch between them as the parameter representing the control actions from the brain is varied. The developed four-cell CPG can produce four distinct gaits: walk, trot, gallop, and bound, similar to the mouse locomotion. The robustness and adaptability of the network design principles are verified using different cell and synapse models.
引用
收藏
页码:3658 / 3669
页数:12
相关论文
共 46 条
  • [1] Gait Transitions in a Phase Oscillator Model of an Insect Central Pattern Generator
    Aminzare, Zahra
    Srivastava, Vaibhav
    Holmes, Philip
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 626 - 671
  • [2] [Anonymous], 2017, SCI REP
  • [3] Computational modeling of brainstem circuits controlling locomotor frequency and gait
    Ausborn, Jessica
    Shevtsova, Natalia A.
    Caggiano, Vittorio
    Danner, Simon M.
    Rybak, Ilya A.
    [J]. ELIFE, 2019, 8
  • [4] State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG
    Ausborn, Jessica
    Snyder, Abigail C.
    Shevtsova, Natalia A.
    Rybak, Ilya A.
    Rubin, Jonathan E.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2018, 119 (01) : 96 - 117
  • [5] The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat
    Bamford, Jeremy A.
    Lebel, R. Marc
    Parseyan, Kian
    Mushahwar, Vivian K.
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (03) : 287 - 296
  • [6] Mechanism of quasi-periodic lag jitter in bursting rhythms by a neuronal network
    Barrio, R.
    Rodriguez, Marcos
    Serrano, S.
    Shilnikov, Andrey
    [J]. EPL, 2015, 112 (03)
  • [7] Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks
    Bellardita, Carmelo
    Kiehn, Ole
    [J]. CURRENT BIOLOGY, 2015, 25 (11) : 1426 - 1436
  • [8] Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
    Brette, R
    Gerstner, W
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (05) : 3637 - 3642
  • [9] Midbrain circuits that set locomotor speed and gait selection
    Caggiano, V.
    Leiras, R.
    Goni-Erro, H.
    Masini, D.
    Bellardita, C.
    Bouvier, J.
    Caldeira, V.
    Fisone, G.
    Kiehn, O.
    [J]. NATURE, 2018, 553 (7689) : 455 - +
  • [10] Locomotor speed control circuits in the caudal brainstem
    Capelli, Paolo
    Pivetta, Chiara
    Esposito, Maria Soledad
    Arber, Silvia
    [J]. NATURE, 2017, 551 (7680) : 373 - +