Disturbance attenuation by dynamic output feedback for input-delay systems

被引:15
作者
Di Loreto, Michael [1 ]
Loiseau, Jean Jacques [2 ]
Lafay, Jean-Francois [2 ]
机构
[1] INSA, CNRS, UMR 5005, Lab Ampere, F-69621 Villeurbanne, France
[2] IRCCyN, CNRS, UMR 6597, F-44321 Nantes 3, France
关键词
disturbance attenuation; optimal rejection; input-delay system; linear control; induced norm; geometric approach; controlled and conditioned invariant subspaces; almost invariance;
D O I
10.1016/j.automatica.2007.12.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses (lie optimal disturbance attenuation problem by Output feedback for multivariable linear systems with delayed inputs. The attenuation is optimal in the sense that the controller minimizes the maximal amplitude of the plant output in response to Such a disturbance. The controller is a general feedback, involving an observer, a state predictor, and a predicted state feedback. The optimal disturbance attenuation problem is [formulated in terms of an equivalent system without delay. The optimal bound of the disturbance attenuation is then characterized, and it is shown that the optimal controller tends to have high gains. A necessary and Sufficient condition to guarantee the existence of an optimal solution is provided using the geometric approach. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2202 / 2206
页数:5
相关论文
共 18 条
[1]   LINEAR-SYSTEMS WITH DELAYED CONTROLS - A REDUCTION [J].
ARTSTEIN, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) :869-879
[2]   L1-OPTIMAL COMPENSATORS FOR CONTINUOUS-TIME SYSTEMS [J].
DAHLEH, MA ;
PEARSON, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (10) :889-895
[3]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[4]  
DILORETO M, 2005, IFAC WORLD C
[5]   FINITE SPECTRUM ASSIGNMENT PROBLEM FOR SYSTEMS WITH DELAYS [J].
MANITIUS, AZ ;
OLBROT, AW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (04) :541-553
[6]   Every stabilizing dead-time controller has an observer-predictor-based structure [J].
Mirkin, L ;
Raskin, N .
AUTOMATICA, 2003, 39 (10) :1747-1754
[7]  
MIRKIN L, 1999, 38 IEEE CDC, P221
[8]   On the dead-time compensation from L1 perspectives [J].
Mirkin, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (06) :1069-1073
[9]   COMPENSATOR SYNTHESIS USING (C,A,B)-PARIS [J].
SCHUMACHER, JM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (06) :1133-1138
[10]  
Trentelman H.L., 1985, THESIS EINDHOVEN U T