Sparse Graphs and an Augmentation Problem

被引:0
作者
Kiraly, Csaba [1 ,2 ]
Mihalyko, Andras [2 ]
机构
[1] MTA ELTE Egervary Res Grp, Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Operat Res, Budapest, Hungary
来源
INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020 | 2020年 / 12125卷
关键词
GENERIC GLOBAL RIGIDITY; BODY; PERCOLATION; ALGORITHMS; FRAMEWORKS;
D O I
10.1007/978-3-030-45771-6_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For two integers k > 0 and l, a graph G = (V, E) is called (k, l)-tight if vertical bar E vertical bar = k vertical bar V vertical bar - l and vertical bar E(X)vertical bar <= k vertical bar X vertical bar - l for all X subset of V for which k vertical bar X vertical bar - l >= 0. G is called (k, l)-redundant if G - e has a spanning (k, f)-tight subgraph for all e is an element of E. We consider the following augmentation problem. Given a graph G = (V, E) that has a (k, l)-tight spanning subgraph, find a graph H = (V, F) with minimum number of edges, such that G + H is (k, l)-redundant. In this paper, we give a polynomial algorithm and a min-max theorem for this augmentation problem when the input is (k, l)-tight. For general inputs, we give a polynomial algorithm when k >= l and show the NP-hardness of the problem when k < l. Since (k, l)-tight graphs play an important role in rigidity theory, these algorithms can be used to make several types of rigid frameworks redundantly rigid by adding a smallest set of new bars.
引用
收藏
页码:238 / 251
页数:14
相关论文
共 29 条
[1]   A theory of network localization [J].
Aspnes, James ;
Eren, Tolga ;
Goldenberg, David K. ;
Morse, A. Stephen ;
Whiteley, Walter ;
Yang, Yang Richard ;
Anderson, Brian D. O. ;
Belhumeur, Peter N. .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2006, 5 (12) :1663-1678
[2]  
Berg AR, 2003, LECT NOTES COMPUT SC, V2832, P78
[3]   Generic global rigidity of body-bar frameworks [J].
Connelly, R. ;
Jordan, T. ;
Whiteley, W. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (06) :689-705
[4]  
Eswaran K. P., 1976, SIAM Journal on Computing, V5, P653, DOI 10.1137/0205044
[5]  
Frank, 2011, CONNECTIONS COMBINAT
[6]   Combined connectivity augmentation and orientation problems [J].
Frank, A ;
Király, TS .
DISCRETE APPLIED MATHEMATICS, 2003, 131 (02) :401-419
[7]   Augmenting the Rigidity of a Graph in R 2 [J].
Garcia, A. ;
Tejel, J. .
ALGORITHMICA, 2011, 59 (02) :145-168
[8]   CONDITIONS FOR UNIQUE GRAPH REALIZATIONS [J].
HENDRICKSON, B .
SIAM JOURNAL ON COMPUTING, 1992, 21 (01) :65-84
[9]   Global rigidity of generic frameworks on the cylinder [J].
Jackson, Bill ;
Nixon, Anthony .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 :193-229
[10]   Brick partitions of graphs [J].
Jackson, Bill ;
Jordan, Tibor .
DISCRETE MATHEMATICS, 2010, 310 (02) :270-275