A computational investigation into rate-dependant vectorcardiogram changes due to specific fibrosis patterns in non-ischaemic dilated cardiomyopathy

被引:9
作者
Gemmell, Philip M. [1 ]
Gillette, Karli [2 ]
Balaban, Gabriel [3 ]
Rajani, Ronak [1 ]
Vigmond, Edward J. [4 ]
Plank, Gernot [2 ]
Bishop, Martin J. [1 ]
机构
[1] Kings Coll London, St Thomas Hosp, North Wing, London SE1 7EH, England
[2] Med Univ Graz, Div Biophys, Neue Stiftingtalstr 6 MC1-D 4, A-8010 Graz, Austria
[3] Univ Oslo, Res Grp Biomed Infomat, Gaustadalleen 23B, N-0373 Oslo, Norway
[4] Univ Bordeaux, IHU Liryc, Site Hop Xavier Arnozan,Ave Haut Leveque, F-33604 Pessac, France
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Vectorcardiogram; Non-ischaemic dilated cardiomyopathy; Scar; Fibrosis; Conduction slowing; Computer modelling; Random forests; PERIODIC REPOLARIZATION DYNAMICS; SUDDEN CARDIAC DEATH; HEART; ACTIVATION; MORTALITY;
D O I
10.1016/j.compbiomed.2020.103895
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with scar-associated fibrotic tissue remodelling are at greater risk of ventricular arrhythmic events, but current methods to detect the presence of such remodelling require invasive procedures. We present here a potential method to detect the presence, location and dimensions of scar using pacing-dependent changes in the vectorcardiogram (VCG). Using a clinically-derived whole-torso computational model, simulations were conducted at both slow and rapid pacing for a variety of scar patterns within the myocardium, with various VCG-derived metrics being calculated, with changes in these metrics being assessed for their ability to discern the presence and size of scar. Our results indicate that differences in the dipole angle at the end of the QRS complex and differences in the QRS area and duration may be used to predict scar properties. Using machine learning techniques, we were also able to predict the location of the scar to high accuracy, using only these VCG-derived rate-dependent changes as input. Such a non-invasive predictive tool for the presence of scar represents a potentially useful clinical tool for identifying patients at arrhythmic risk.
引用
收藏
页数:13
相关论文
共 57 条
  • [21] Cardiac Magnetic Resonance Scar Imaging for Sudden Cardiac Death Risk Stratification in Patients with Non-Ischemic Cardiomyopathy
    Kim, Eun Kyoung
    Chattranukulchai, Pairoj
    Klem, Igor
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (04) : 683 - 695
  • [22] Left ventricular geometric remodeling in relation to non-ischemic scar pattern on cardiac magnetic resonance imaging
    Kim, Jiwon
    Kochav, Jonathan D.
    Gurevich, Sergey
    Afroz, Anika
    Petashnick, Maya
    Volo, Samuel
    Diaz, Belen
    Okin, Peter M.
    Horn, Evelyn
    Devereux, Richard B.
    Weinsaft, Jonathan W.
    [J]. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2014, 30 (08) : 1559 - 1567
  • [23] Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure
    Kober, Lars
    Thune, Jens J.
    Nielsen, Jens C.
    Haarbo, Jens
    Videbaek, Lars
    Korup, Eva
    Jensen, Gunnar
    Hildebrandt, Per
    Steffensen, Flemming H.
    Bruun, Niels E.
    Eiskjaer, Hans
    Brandes, Axel
    Thogersen, Anna M.
    Gustafsson, Finn
    Egstrup, Kenneth
    Videbaek, Regitze
    Hassager, Christian
    Svendsen, Jesper H.
    Hofsten, Dan E.
    Torp-Pedersen, Christian
    Pehrson, Steen
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (13) : 1221 - 1230
  • [24] RECONSTRUCTION OF THE FRANK VECTORCARDIOGRAM FROM STANDARD ELECTROCARDIOGRAPHIC LEADS - DIAGNOSTIC COMPARISON OF DIFFERENT METHODS
    KORS, JA
    VANHERPEN, G
    SITTIG, AC
    VANBEMMEL, JH
    [J]. EUROPEAN HEART JOURNAL, 1990, 11 (12) : 1083 - 1092
  • [25] Methodology of QT-Interval Measurement in the Modular ECG Analysis System (MEANS)
    Kors, Jan A.
    van Herpen, Gerard
    [J]. ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2009, 14 : S48 - S53
  • [26] Scar progression in patients with nonischemic cardiomyopathy and ventricular arrhythmias
    Liuba, Ioan
    Frankel, David S.
    Riley, Michael P.
    Hutchinson, Mathew D.
    Lin, David
    Garcia, Fermin C.
    Callans, David J.
    Supple, Gregory E.
    Dixit, Sanjay
    Bala, Rupa
    Squara, Fabien
    Zado, Erica S.
    Marchlinski, Francis E.
    [J]. HEART RHYTHM, 2014, 11 (05) : 755 - 762
  • [27] Exercise Testing in Sports Medicine
    Loellgen, Herbert
    Leyk, Dieter
    [J]. DEUTSCHES ARZTEBLATT INTERNATIONAL, 2018, 115 (24): : 409 - +
  • [28] Classification and regression trees
    Loh, Wei-Yin
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (01) : 14 - 23
  • [29] Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study
    Maass, Alexander H.
    Vernooy, Kevin
    Wijers, Sofieke C.
    van 't Sant, Jetske
    Cramer, Maarten J.
    Meine, Mathias
    Allaart, Cornelis P.
    De lange, Frederik J.
    Prinzen, Frits W.
    Gerritse, Bart
    Erdtsieck, Erna
    Scheerder, Coert O. S.
    Hill, Michael R. S.
    Scholten, Marcoen
    Kloosterman, Marielle
    ter Horst, Iris A. H.
    Voors, Adriaan A.
    Vos, Marc A.
    Rienstra, Michiel
    Van Gelder, Isabelle C.
    [J]. EUROPACE, 2018, 20 (02): : E1 - E10
  • [30] Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies
    Mahrholdt, H
    Wagner, A
    Judd, RM
    Sechtem, U
    Kim, RJ
    [J]. EUROPEAN HEART JOURNAL, 2005, 26 (15) : 1461 - 1474