New Generalization of Orthogonal Wavelet Bases

被引:6
作者
Pleshcheva, E. A. [1 ]
机构
[1] Ural State Univ, Ekaterinburg 620083, Russia
基金
俄罗斯基础研究基金会;
关键词
multiresolution analysis; wavelets; scaling functions;
D O I
10.1134/S0081543811050130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Wavelet bases are constructed for n scaling functions. Fast algorithms for computing coefficients of expanding a function over such bases are presented.
引用
收藏
页码:S124 / S132
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[2]  
BERKOLAIKO MZ, 1992, DOKL AKAD NAUK+, V326, P935
[3]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[5]  
Novikov I.Ya., 1998, Russian Mathematical Surveys, V53, P53
[6]  
Novikov I. Ya., 2011, WAVELET THEORY
[7]  
Petukhov A. P., 1999, INTRO THEORY WAVELET
[8]  
Pleshcheva E. A., 2009, PROBLEMS THEORETICAL, P88
[9]   SHORT WAVELETS AND MATRIX DILATION EQUATIONS [J].
STRANG, G ;
STRELA, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (01) :108-115
[10]   The application of multiwavelet filterbanks to image processing [J].
Strela, V ;
Heller, PN ;
Strang, G ;
Topiwala, P ;
Heil, C .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (04) :548-563