Short-Term Prognostics of PEM Fuel Cells: A Comparative and Improvement Study

被引:58
作者
Liu, Hao [1 ]
Chen, Jian [1 ]
Hissel, Daniel [2 ]
Su, Hongye [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Univ Bourgogne Franche Comte, CNRS, FEMTO ST, FCLAB, F-90010 Belfort, France
基金
中国国家自然科学基金;
关键词
Neural network (NN); particle swarm optimization (PSO); proton exchange membrane fuel cells (PEMFCs); short-term prognostics; KALMAN FILTER; DEGRADATION; LIFE;
D O I
10.1109/TIE.2018.2873105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the most promising types of fuel cells, the proton exchange membrane fuel cells (PEMFCs) can be utilized in many applications. However, it still faces two main challenges before large-scale industrial applications, namely short lifetime and high costs. The aim of this paper is to establish an accurate online short-term prognostics method to help users extend the lifetime and reduce the cost of PEMFCs. First, we compare the short-term prognostics accuracy and computational efficiency of several different methods including the Elman neural network, the group method of data handling, the adaptive neuro-fuzzy inference system (ANFIS) with different fuzzy inference system creation strategies, and the wavelet decomposition approach. Test results show that the ANFIS with fuzzy c-means (ANFIS-FCM) strategy has the best short-term prognostics performance. Then, we propose an automatic parameter adjustment method for ANFIS-FCM by using the particle swarm optimization (PSO) algorithm. Test results show that the PSO algorithm can effectively adjust the parameters and achieve improved prognostics results. Finally, the proposed prognostics methods are verified on a PEMFC experimental platform. Experimental results show that the proposed methods have great potential for practical applications.
引用
收藏
页码:6077 / 6086
页数:10
相关论文
共 34 条
[1]   Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell [J].
Bressel, Mathieu ;
Hilairet, Mickael ;
Hissel, Daniel ;
Bouamama, Belkacem Ould .
APPLIED ENERGY, 2016, 164 :220-227
[2]   Remaining Useful Life Prediction and Uncertainty Quantification of Proton Exchange Membrane Fuel Cell Under Variable Load [J].
Bressel, Mathieu ;
Hilairet, Mickael ;
Hissel, Daniel ;
Bouamama, Belkacem Ould .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) :2569-2577
[3]   Optima Oxygen Excess Ratio Control for PEM Fuel Cells [J].
Chen, Jian ;
Liu, Zhiyang ;
Wang, Fan ;
Ouyang, Quan ;
Su, Hongye .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (05) :1711-1721
[4]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[5]  
Gouriveau R., 2014, Tech. Rep., P1
[6]   Wavelet-Based Approach for Online Fuel Cell Remaining Useful Lifetime Prediction [J].
Ibrahim, Mona ;
Steiner, Nadia Yousfi ;
Jemei, Samir ;
Hissel, Daniel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (08) :5057-5068
[7]   POLYNOMIAL THEORY OF COMPLEX SYSTEMS [J].
IVAKHNENKO, AG .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1971, SMC1 (04) :364-+
[8]   Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale [J].
Jahnke, T. ;
Futter, G. ;
Latz, A. ;
Malkow, T. ;
Papakonstantinou, G. ;
Tsotridis, G. ;
Schott, P. ;
Gerard, M. ;
Quinaud, M. ;
Quiroga, M. ;
Franco, A. A. ;
Malek, K. ;
Calle-Vallejo, F. ;
de Morais, R. Ferreira ;
Kerber, T. ;
Sautet, P. ;
Loffreda, D. ;
Strahl, S. ;
Serra, M. ;
Polverino, P. ;
Pianese, C. ;
Mayur, M. ;
Bessler, W. G. ;
Kompis, C. .
JOURNAL OF POWER SOURCES, 2016, 304 :207-233
[9]   Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks [J].
Javed, Kamran ;
Gouriveau, Rafael ;
Zerhouni, Noureddine ;
Hissel, Daniel .
JOURNAL OF POWER SOURCES, 2016, 324 :745-757
[10]  
Javed K, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1047, DOI 10.1109/ICIT.2015.7125235