Magneto-Acoustic Resonator for Aquatic Animal Tracking

被引:10
作者
Almansouri, Abdullah Saud [1 ,2 ]
Salama, Khaled Nabil [1 ]
Kosel, Juergen [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
[2] Univ Jeddah, Dept Elect Engn & Comp Engn, Jeddah, Saudi Arabia
关键词
Acoustic; amorphous ribbon; animal tracking; bistable cantilever; frequency upconversion; magnetic; MEMS; resonator; self-powered; MAGNETOSTRICTIVE BILAYERS; MOVEMENT; PATTERNS; SENSORS;
D O I
10.1109/TMAG.2018.2861980
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Over the past three decades, passive acoustic telemetry has significantly helped marine scientist to study and understand the spatial ecology, migratory behaviors, and mortality rates of aquatic animals. A popular telemetry system consists of two components: an acoustic transmitter tag attached to an aquatic animal and powered by a small battery, and a stationary station that receives the acoustic signals from the tagged animal and determines its location. The added weight and increased size of the tag introduced by the battery limit the implementation of this system to relatively large animals. Moreover, these tags have a limited operational time determined by the lifetime of the battery in combination with the measurement frequency and data resolution and transfer rate. In this paper, a self-powered magneto-acoustic resonator for animal tracking is proposed. It is achieved by utilizing the low-frequency motions of the animals to excite high-frequency acoustic pulses. The measurement results show that the device is capable of producing an average acoustic sound of 55 dB sound pressure level at 1 m of distance with a resonant frequency of 15 kHz.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
Almansouri A. S., 2018, INT C MAGN SAN FRANC
[2]   Continental-scale animal tracking reveals functional movement classes across marine taxa [J].
Brodie, Stephanie ;
Ledee, Elodie J. I. ;
Heupel, Michelle R. ;
Babcock, Russell C. ;
Campbell, Hamish A. ;
Gledhill, Daniel C. ;
Hoenner, Xavier ;
Huveneers, Charlie ;
Jaine, Fabrice R. A. ;
Simpfendorfer, Colin A. ;
Taylor, Matthew D. ;
Udyawer, Vinay ;
Harcourt, Robert G. .
SCIENTIFIC REPORTS, 2018, 8
[3]   Movement patterns of juvenile hawksbill turtles Eretmochelys imbricata at a Caribbean coral atoll: long-term tracking using passive acoustic telemetry [J].
Chevis, Megan G. ;
Godley, Brendan J. ;
Lewis, James P. ;
Lewis, Julie Jackson ;
Scales, Kylie L. ;
Graham, Rachel T. .
ENDANGERED SPECIES RESEARCH, 2017, 32 :309-319
[4]  
De La Torre P. R., 2012, 2012 Oceans-Yeosu, P1, DOI [10.1109/OCEANS-Yeosu.2012.6263512, DOI 10.1109/OCEANS-YEOSU.2012.6263512]
[5]   An injectable acoustic transmitter for juvenile salmon [J].
Deng, Z. D. ;
Carlson, T. J. ;
Li, H. ;
Xiao, J. ;
Myjak, M. J. ;
Lu, J. ;
Martinez, J. J. ;
Woodley, C. M. ;
Weiland, M. A. ;
Eppard, M. B. .
SCIENTIFIC REPORTS, 2015, 5 :8111
[6]   Scaling macroscopic aquatic locomotion [J].
Gazzola, Mattia ;
Argentina, Mederic ;
Mahadevan, L. .
NATURE PHYSICS, 2014, 10 (10) :758-761
[7]   LASER CUTTING OF AMORPHOUS ALLOY RIBBON AND POWERCORE CONSOLIDATED METAL STRIP [J].
GLASS, JM ;
GROGER, HP ;
CHURCHILL, RJ ;
NORIN, EM .
JOURNAL OF MATERIALS ENGINEERING, 1990, 12 (01) :59-68
[8]   Magnetoelastic sensors for remote query environmental monitoring [J].
Grimes, CA ;
Ong, KG ;
Loiselle, K ;
Stoyanov, PG ;
Kouzoudis, D ;
Liu, Y ;
Tong, C ;
Tefiku, F .
SMART MATERIALS & STRUCTURES, 1999, 8 (05) :639-646
[9]   Wireless magnetoelastic resonance sensors: A critical review [J].
Grimes, CA ;
Mungle, CS ;
Zeng, ZF ;
Jain, MK ;
Dreschel, WR ;
Paulose, M ;
Ong, KG .
SENSORS, 2002, 2 (07) :294-313
[10]  
Ingram E. C., 2018, RIVER RES APPL, P1