Remarks on Serre's modularity conjecture

被引:6
作者
Dieulefait, Luis [1 ]
机构
[1] Univ Barcelona, Dept Algebra & Geometria, E-08007 Barcelona, Spain
关键词
ABELIAN-VARIETIES; REPRESENTATIONS; FONTAINE; FAMILIES;
D O I
10.1007/s00229-011-0503-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a proof of Serre's conjecture for the case of odd level and arbitrary weight. Our proof does not use any modularity lifting theorem in characteristic 2 (moreover, we will not consider at all characteristic 2 representations at any step of our proof). The key tool in the proof is a very general modularity lifting result of Kisin, which is combined with the methods and results of previous articles on Serre's conjecture by Khare, Wintenberger, and the author, and modularity results of Schoof for abelian varieties of small conductor. Assuming GRH, infinitely many cases of even level will also be proved.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 2007, CURRENT DEV MATH
[2]   Construction of some families of 2-dimensional crystalline representations [J].
Berger, L ;
Li, HF ;
Zhu, HJ .
MATHEMATISCHE ANNALEN, 2004, 329 (02) :365-377
[3]   Semistable abelian varieties over Q [J].
Calegari, F .
MANUSCRIPTA MATHEMATICA, 2004, 113 (04) :507-529
[4]   Semi-stable representations of torsion in the cas er < p-1 [J].
Caruso, X .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 594 :35-92
[5]  
COLEMAN MD, 1990, J REINE ANGEW MATH, V403, P1
[6]   The Tamagawa number conjecture of adjoint motives of modular forms [J].
Diamond, F ;
Flach, M ;
Guo, L .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (05) :663-727
[7]  
Dieulefait L, 2003, MATH RES LETT, V10, P145
[8]  
Dieulefait L, 2009, MINIMIZATION RECEIVE
[9]  
Dieulefait L, 2007, REV MAT IBEROAM, V23, P1115
[10]  
Dieulefait Luis, 2003, Fields Inst. Commun. Amer. Math. Soc., V38, P159, DOI [DOI 10.1090/FIC/038, 10.4310/mrl.2003.v10.n2.a1, DOI 10.4310/MRL.2003.V10.N2.A1]