On the average sum of the kth divisor function over values of quadratic polynomials

被引:1
作者
Lapkova, Kostadinka [1 ]
Zhou, Nian Hong [2 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-II, A-8010 Graz, Austria
[2] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Divisor functions; Quadratic polynomials; Circle method;
D O I
10.1007/s11139-019-00240-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(x) is an element of Z[x(1), x(2), ... ,x(n)], n >= 3, be ann-variable quadratic polynomial with a nonsingular quadratic part. Using the circle method we derive an asymptotic formula for the sum S-k,S-F(X; B)= Sigma(x is an element of XB boolean AND Zn) tau(k) (F(x)); for X tending to infinity, where B subset of R-n is ann-dimensional box such that min(x is an element of XB) F(x) >= 0 for all sufficiently largeX, and tau(k)(center dot) is thekth divisor function for any integer k >= 2.
引用
收藏
页码:849 / 872
页数:24
相关论文
共 17 条
  • [2] Higher order divisor problems
    Blomer, Valentin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 937 - 952
  • [3] The divisor problem for binary cubic forms
    Browning, Tim
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 579 - 602
  • [4] Daniel S, 1999, J REINE ANGEW MATH, V507, P107
  • [5] Daniel S, 1997, THESIS
  • [6] The divider problem for 4 degree binary forms
    de la Breteche, R.
    Browning, T. D.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 646 : 1 - 44
  • [7] A polynomial divisor problem
    Friedlander, J. B.
    Iwaniec, H.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 601 : 109 - 137
  • [8] Greaves G., 1970, ACTA ARITH, V17, P1, DOI DOI 10.4064/AA-17-1-1-28.1195
  • [9] Some problems about the ternary quadratic form m12 + m22 + m32
    Guo, Ruting
    Zhai, Wenguang
    [J]. ACTA ARITHMETICA, 2012, 156 (02) : 101 - 121
  • [10] Sums of the triple divisor function over values of a quaternary quadratic form
    Hu, Liqun
    Yang, Li
    [J]. ACTA ARITHMETICA, 2018, 183 (01) : 63 - 85