Asymptotic behavior of a multiplexer fed by a long-range dependent process

被引:23
作者
Liu, Z
Nain, P
Towsley, D
Zhang, ZL
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
[3] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
asymptotic self-similar process; long-range dependence; subexponential distributions; Pareto distribution; large deviations; queues;
D O I
10.1239/jap/1032374233
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the asymptotic behavior of the tail of the stationary backlog distribution in a single server queue with constant service capacity c, fed by the so-called M/G/infinity input process or Cox input process. Asymptotic lower bounds are obtained for any distribution G and asymptotic upper bounds are derived when G is a subexponential distribution. We find the bounds to be tight in some instances, e.g. when G corresponds to either the Pareto or lognormal distribution and c - rho < 1, where rho is the arrival rate at the buffer.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 32 条
  • [1] ANANTHARAM V, 1995, P 34 IEEE C DEC CONT, V1, P859
  • [2] [Anonymous], IEEE ACM T NET
  • [3] [Anonymous], 1979, Reversibility and Stochastic Networks
  • [4] Beran J, 1994, STAT LONG MEMORY PRO
  • [5] BINGHAM N. H., 1989, Regular variation
  • [6] Borovkov AA, 1976, STOCHASTIC PROCESSES
  • [7] Fluid queues and regular variation
    Boxma, OJ
    [J]. PERFORMANCE EVALUATION, 1996, 27-8 : 699 - 712
  • [8] Fluid queues with long-tailed activity period distributions
    Boxma, OJ
    Dumas, V
    [J]. COMPUTER COMMUNICATIONS, 1998, 21 (17) : 1509 - 1529
  • [9] Heavy traffic analysis of a storage model with long range dependent on/off sources
    Brichet, F
    Roberts, J
    Simonian, A
    Veitch, D
    [J]. QUEUEING SYSTEMS, 1996, 23 (1-4) : 197 - 215
  • [10] Chistyakov VP., 1964, Theory Probab. Appl., V9, P640, DOI [DOI 10.1137/1109088, 10.1137/1109088]