EGDD(n1 + n2, 3; λ1, λ2) for n1=2 and n1=5

被引:0
作者
Billings, Blaine [1 ]
Namyalo, Kasifa [2 ]
Sarvate, Dinesh G. [1 ]
机构
[1] Coll Charleston, Charleston, SC 29424 USA
[2] Mharara Univ Sci & Technol, Mharara, Uganda
关键词
GROUP DIVISIBLE DESIGNS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A EGDD(n(1) + n(2), 3; lambda(1), lambda(2)) is a group divisible design with two groups of sizes n(1) and n(2) with block size 3 such that each pair of distinct elements from the same group occurs in lambda(1 )blocks, each pair of elements from different groups occurs in lambda(2) blocks and have equal number of blocks of configuration (1, 2) and (0, 3). We prove that necessary conditions are sufficient for the existence of EGDD(n(1) + n(2), 3; lambda(1), lambda(2)) for n(1) = 2 and 5.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 16 条
[1]  
Abel R., 2007, HDB COMBINATORIAL DE, Vsecond, P124
[2]  
Billings B., 2017, JCMCC, V102
[3]   GROUP DIVISIBLE DESIGNS WITH BLOCK-SIZE 4 [J].
BROUWER, AE ;
SCHRIJVER, A ;
HANANI, H .
DISCRETE MATHEMATICS, 1977, 20 (01) :1-10
[4]   Group divisible designs with two associate classes, and quadratic leaves of triple systems [J].
Chaffee, Joe ;
Rodger, C. A. .
DISCRETE MATHEMATICS, 2013, 313 (20) :2104-2114
[5]  
Colbourn C.J., 1999, OX MATH M
[6]  
Colbourn C.J., 2007, HDB COMBINATORIAL DE, P255
[7]  
Faruqi S., 2016, B OF THE ICA, V78, P23
[8]  
Fu HL, 2000, ARS COMBINATORIA, V54, P33
[9]   Group divisible designs with two associate grasses: n=2 or m=2 [J].
Fu, HL ;
Rodger, CA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 83 (01) :94-117
[10]  
Ge G., 2007, HDB COMBINATORIAL DE, P261