Clinician-centric diagnosis of rare genetic diseases: performance of a gene pertinence metric in decision support for clinicians

被引:6
作者
Segal, Michael M. [1 ]
George, Renee [2 ,3 ]
Waltman, Peter [4 ,5 ]
El-Hattab, Ayman W. [6 ]
James, Kiely N. [2 ,3 ]
Stanley, Valentina [2 ,3 ]
Gleeson, Joseph [2 ,3 ]
机构
[1] SimulConsult Inc, Chestnut Hill, MA 02467 USA
[2] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[3] Rady Childrens Hosp, Rady Childrens Inst Genom Med, San Diego, CA USA
[4] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA
[5] Columbia Univ, Dept Syst Biol, New York, NY USA
[6] Univ Sharjah, Coll Med, Dept Clin Sci, Sharjah, U Arab Emirates
基金
美国国家卫生研究院;
关键词
Rare disease diagnosis; Diagnostic decision support system; Artificial intelligence; Genomic analysis; Copy number variation; JOINT CONSENSUS RECOMMENDATION; MEDICAL GENETICS; AMERICAN-COLLEGE; GENOMICS; STANDARDS; VARIANTS;
D O I
10.1186/s13023-020-01461-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background In diagnosis of rare genetic diseases we face a decision as to the degree to which the sequencing lab offers one or more diagnoses based on clinical input provided by the clinician, or the clinician reaches a diagnosis based on the complete set of variants provided by the lab. We tested a software approach to assist the clinician in making the diagnosis based on clinical findings and an annotated genomic variant table, using cases already solved using less automated processes. Results For the 81 cases studied (involving 216 individuals), 70 had genetic abnormalities with phenotypes previously described in the literature, and 11 were not described in the literature at the time of analysis ("discovery genes"). These included cases beyond a trio, including ones with different variants in the same gene. In 100% of cases the abnormality was recognized. Of the 70, the abnormality was ranked #1 in 94% of cases, with an average rank 1.1 for all cases. Large CNVs could be analyzed in an integrated analysis, performed in 24 of the cases. The process is rapid enough to allow for periodic reanalysis of unsolved cases. Conclusions A clinician-friendly environment for clinical correlation can be provided to clinicians who are best positioned to have the clinical information needed for this interpretation.
引用
收藏
页数:10
相关论文
共 20 条
[1]   An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge [J].
Brownstein, Catherine A. ;
Beggs, Alan H. ;
Homer, Nils ;
Merriman, Barry ;
Yu, Timothy W. ;
Flannery, Katherine C. ;
DeChene, Elizabeth T. ;
Towne, Meghan C. ;
Savage, Sarah K. ;
Price, Emily N. ;
Holm, Ingrid A. ;
Luquette, Lovelace J. ;
Lyon, Elaine ;
Majzoub, Joseph ;
Neupert, Peter ;
McCallie, David, Jr. ;
Szolovits, Peter ;
Willard, Huntington F. ;
Mendelsohn, Nancy J. ;
Temme, Renee ;
Finkel, Richard S. ;
Yum, Sabrina W. ;
Medne, Livija ;
Sunyaev, Shamil R. ;
Adzhubey, Ivan ;
Cassa, Christopher A. ;
de Bakker, Paul I. W. ;
Duzkale, Hatice ;
Dworzynski, Piotr ;
Fairbrother, William ;
Francioli, Laurent ;
Funke, Birgit H. ;
Giovanni, Monica A. ;
Handsaker, Robert E. ;
Lage, Kasper ;
Lebo, Matthew S. ;
Lek, Monkol ;
Leshchiner, Ignaty ;
MacArthur, Daniel G. ;
McLaughlin, Heather M. ;
Murray, Michael F. ;
Pers, Tune H. ;
Polak, Paz P. ;
Raychaudhuri, Soumya ;
Rehm, Heidi L. ;
Soemedi, Rachel ;
Stitziel, Nathan O. ;
Vestecka, Sara ;
Supper, Jochen ;
Gugenmus, Claudia .
GENOME BIOLOGY, 2014, 15 (03)
[2]   Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG) [J].
Deignan, Joshua L. ;
Chung, Wendy K. ;
Kearney, Hutton M. ;
Monaghan, Kristin G. ;
Rehder, Catherine W. ;
Chao, Elizabeth C. .
GENETICS IN MEDICINE, 2019, 21 (06) :1267-1270
[3]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+
[4]  
EDDY DM, 1982, NEW ENGL J MED, V306, P1263, DOI 10.1056/NEJM198205273062104
[5]  
Fromer Menachem, 2014, Curr Protoc Hum Genet, V81, DOI 10.1002/0471142905.hg0723s81
[6]   TEACHING CLINICAL MEDICINE BY ITERATIVE HYPOTHESIS-TESTING - LETS PREACH WHAT WE PRACTICE [J].
KASSIRER, JP .
NEW ENGLAND JOURNAL OF MEDICINE, 1983, 309 (15) :921-923
[7]   ClinVar: public archive of relationships among sequence variation and human phenotype [J].
Landrum, Melissa J. ;
Lee, Jennifer M. ;
Riley, George R. ;
Jang, Wonhee ;
Rubinstein, Wendy S. ;
Church, Deanna M. ;
Maglott, Donna R. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D980-D985
[8]  
Li H, 2013, ARXIV13033997V1
[9]   The Ensembl Variant Effect Predictor [J].
McLaren, William ;
Gil, Laurent ;
Hunt, Sarah E. ;
Riat, Harpreet Singh ;
Ritchie, Graham R. S. ;
Thormann, Anja ;
Flicek, Paul ;
Cunningham, Fiona .
GENOME BIOLOGY, 2016, 17
[10]   Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology [J].
Richards, Sue ;
Aziz, Nazneen ;
Bale, Sherri ;
Bick, David ;
Das, Soma ;
Gastier-Foster, Julie ;
Grody, Wayne W. ;
Hegde, Madhuri ;
Lyon, Elaine ;
Spector, Elaine ;
Voelkerding, Karl ;
Rehm, Heidi L. .
GENETICS IN MEDICINE, 2015, 17 (05) :405-424