Degeneracy lifting of Majorana bound states due to electron-phonon interactions

被引:20
作者
Aseev, Pavel P. [1 ]
Marra, Pasquale [2 ]
Stano, Peter [2 ,3 ,4 ]
Klinovaja, Jelena [1 ]
Loss, Daniel [1 ,2 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[3] Univ Tokyo, Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
NANOWIRE; SUPERCONDUCTOR; SCATTERING; SIGNATURE; FERMIONS;
D O I
10.1103/PhysRevB.99.205435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically how electron-phonon interaction affects the energies and level broadening (inverse lifetime) of Majorana bound states (MBSs) in a clean topological nanowire at low temperatures. At zero temperature, the energy splitting between the right and left MBSs remains exponentially small with increasing nanowire length L. At finite temperatures, however, the absorption of thermal phonons leads to the broadening of energy levels of the MBSs that does not decay with system length, and the coherent absorption/emission of phonons at opposite ends of the nanowire results in MBSs energy splitting that decays only as an inverse power law in L. Both effects remain exponential in temperature. In the case of quantized transverse motion of phonons, the presence of Van Hove singularities in the phonon density of states causes additional resonant enhancement of both the energy splitting and the level broadening of the MBSs. This is the most favorable case to observe the phonon-induced energy splitting of MBSs as it becomes much larger than the broadening even if the topological nanowire is much longer than the coherence length. We also calculate the charge and spin associated with the energy splitting of the MBSs induced by phonons. We consider both a spinless low-energy continuum model, which we evaluate analytically, as well as a spinful lattice model for a Rashba nanowire, which we evaluate numerically.
引用
收藏
页数:16
相关论文
共 74 条
[11]  
Das A, 2012, NAT PHYS, V8, P887, DOI [10.1038/NPHYS2479, 10.1038/nphys2479]
[12]   Majorana zero modes and topological quantum computation [J].
Das Sarma, Sankar ;
Freedman, Michael ;
Nayak, Chetan .
NPJ QUANTUM INFORMATION, 2015, 1
[13]   Electric field tunable superconductor-semiconductor coupling in Majorana nanowires [J].
de Moor, Michiel W. A. ;
Bommer, Jouri D. S. ;
Xu, Di ;
Winkler, Georg W. ;
Antipov, Andrey E. ;
Bargerbos, Arno ;
Wang, Guanzhong ;
van Loo, Nick ;
Veld, Roy L. M. Op Het ;
Gazibegovic, Sasa ;
Car, Diana ;
Logan, John A. ;
Pendharkar, Mihir ;
Lee, Joon Sue ;
Bakkers, Erik P. A. M. ;
Palmstrom, Chris J. ;
Lutchyn, Roman M. ;
Kouwenhoven, Leo P. ;
Zhang, Hao .
NEW JOURNAL OF PHYSICS, 2018, 20
[14]   Majorana fermions in superconducting wires: Effects of long-range hopping, broken time-reversal symmetry, and potential landscapes [J].
DeGottardi, Wade ;
Thakurathi, Manisha ;
Vishveshwara, Smitha ;
Sen, Diptiman .
PHYSICAL REVIEW B, 2013, 88 (16)
[15]   Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device [J].
Deng, M. T. ;
Yu, C. L. ;
Huang, G. Y. ;
Larsson, M. ;
Caroff, P. ;
Xu, H. Q. .
NANO LETTERS, 2012, 12 (12) :6414-6419
[16]   Cavity quantum electrodynamics with mesoscopic topological superconductors [J].
Dmytruk, Olesia ;
Trif, Mircea ;
Simon, Pascal .
PHYSICAL REVIEW B, 2015, 92 (24)
[17]   Dynamical detection of Majorana fermions in current-biased nanowires [J].
Dominguez, Fernando ;
Hassler, Fabian ;
Platero, Gloria .
PHYSICAL REVIEW B, 2012, 86 (14)
[18]   Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires [J].
Escribano, Samuel D. ;
Yeyati, Alfredo Levy ;
Prada, Elsa .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 :2171-2180
[19]   Majorana Edge States in Interacting One-Dimensional Systems [J].
Gangadharaiah, Suhas ;
Braunecker, Bernd ;
Simon, Pascal ;
Loss, Daniel .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[20]   Decay rates for topological memories encoded with Majorana fermions [J].
Goldstein, G. ;
Chamon, C. .
PHYSICAL REVIEW B, 2011, 84 (20)