Computational Intelligence in Astronomy: A Survey

被引:14
作者
Wang, Ke [1 ]
Guo, Ping [2 ]
Yu, Fusheng [3 ]
Duan, Lingzi [3 ]
Wang, Yuping [4 ]
Du, Hui [5 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Normal Univ, Sch Syst Sci, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[4] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
[5] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational intelligence; astronomical data analysis; neural networks; fuzzy set; evolutionary computation; DIGITAL SKY SURVEY; AUTOMATED MORPHOLOGICAL CLASSIFICATION; ESTIMATING PHOTOMETRIC REDSHIFTS; STAR-GALAXY DISCRIMINATION; UNIVERSE PULSAR SURVEY; LOGIC-BASED ALGORITHM; STELLAR SPECTRA; NEURAL-NETWORK; 2-DIMENSIONAL CLASSIFICATION; SYSTEM;
D O I
10.2991/ijcis.11.1.43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With explosive growth of the astronomical data, astronomy has become a representative data-rich discipline so as to defy traditional research methodologies and paradigm to analyze data and discover new knowledge from the data. How to effectively process and analyze the astronomical data is a fundamental work while a key scientific requirement of modern astronomical surveys. This situation has motivated needs for fostering of a wide range of cooperation with the astronomers and computer scientists. Computational intelligence, an important research direction of artificial intelligence and information sciences, has been shown to be promising to solve complex problems in scientific research and engineering. This paper presents a review of the current state of the application of computational intelligence in astronomy. We believe that computational intelligence is expected to provide powerful tools for addressing challenges in astronomical data analysis.
引用
收藏
页码:575 / 590
页数:16
相关论文
共 126 条
[61]  
Kim H., 2015, IAU GEN ASSEMBLY, V22, P57476
[62]   Stellar classification from single-band imaging using machine learning [J].
Kuntzer, T. ;
Tewes, M. ;
Courbin, F. .
ASTRONOMY & ASTROPHYSICS, 2016, 591
[63]   Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation [J].
Laurino, O. ;
D'Abrusco, R. ;
Longo, G. ;
Riccio, G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (04) :2165-2195
[64]  
Lazio T. J. W., 1994, MILLISECOND PULSARS
[65]  
Lazio T. J. W., 1997, PUBLICATIONS ASTRONO, V109, P1925
[66]   Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions [J].
Li, Shuang ;
Zhu, Yongsheng ;
Wang, Yukai .
ADVANCES IN SPACE RESEARCH, 2014, 53 (04) :696-707
[67]   Prospects of gravitational wave data mining and exploration via evolutionary computing [J].
Lightman, M. ;
Thurakal, J. ;
Dwyer, J. ;
Grossman, R. ;
Kalmus, P. ;
Matone, L. ;
Rollins, J. ;
Zairis, S. ;
Marka, S. .
SIXTH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES, 2006, 32
[68]  
Liu Z., 2016, SPECTROSCOPY SPECTRA
[69]   Automatic Classification Method of Star Spectra Data Based on Manifold Fuzzy Twin Support Vector Machine [J].
Liu Zhong-bao ;
Gao Yan-yun ;
Wang Jian-zhen .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (01) :263-266
[70]   The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars [J].
Manchester, RN ;
Lyne, AG ;
Camilo, F ;
Bell, JF ;
Kaspi, VM ;
D'Amico, N ;
McKay, NPF ;
Crawford, F ;
Stairs, IH ;
Possenti, A ;
Kramer, M ;
Sheppard, DC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 328 (01) :17-35