Pseudo-Riemannian spectral triples and the harmonic oscillator

被引:32
作者
van den Dungen, Koen [1 ]
Paschke, Mario
Rennie, Adam [2 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Pseudo-Riemannian manifold; Spectral triple; K-homology; Harmonic oscillator; LOCAL INDEX FORMULA; NONCOMMUTATIVE GEOMETRY; ALGEBRAS I;
D O I
10.1016/j.geomphys.2013.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define pseudo-Riemannian spectral triples, an analytic context broad enough to encompass a spectral description of a wide class of pseudo-Riemannian manifolds, as well as their noncommutative generalisations. Our main theorem shows that to each pseudo-Riemannian spectral triple we can associate a genuine spectral triple, and so a K-homology class. With some additional assumptions we can then apply the local index theorem. We give a range of examples and some applications. The example of the harmonic oscillator in particular shows that our main theorem applies to much more than just classical pseudo-Riemannian manifolds. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 2000, Analytic K-Homology
[2]  
[Anonymous], 1980, FUNCTIONAL ANAL
[3]  
Baum H., 1981, TEUBNER TEXTE MATH, V41
[4]  
BAUM P, 1989, J DIFFER GEOM, V30, P761
[5]   Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras [J].
Benameur, MT ;
Fack, T .
ADVANCES IN MATHEMATICS, 2006, 199 (01) :29-87
[6]  
Bernau S. J., 1968, J. Austral. Math. Soc., V8, P17, DOI [10.1017/S1446788700004560, DOI 10.1017/S1446788700004560]
[7]   On a property of Lp spaces on semifinite von Neumann algebras [J].
Bikchentaev, AM .
MATHEMATICAL NOTES, 1998, 64 (1-2) :159-163
[8]  
Bognar J., 1974, Indefinite Inner Product Spaces
[9]   Essential self-adjointness of Schrodinger-type operators on manifolds [J].
Braverman, M ;
Milatovic, O ;
Shubin, M .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :641-692
[10]  
Carey A., 2013, MEM AM MATH IN PRESS