Abelian Codes in Principal Ideal Group Algebras

被引:29
作者
Jitman, Somphong [1 ]
Ling, San [1 ]
Liu, Hongwei [2 ]
Xie, Xiaoli [2 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] Cent China Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Abelian codes; asymptotic behavior; complementary dual codes; group algebras; principal ideals; reversible codes; self-dual codes; CYCLIC CODES; FINITE-FIELDS;
D O I
10.1109/TIT.2012.2236383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study abelian codes in principal ideal group algebras (PIGAs). We first give an algebraic characterization of abelian codes in any group algebra and provide some general results. For abelian codes in a PIGA, which can be viewed as cyclic codes over a semisimple group algebra, it is shown that every abelian code in a PIGA admits generator and check elements. These are analogous to the generator and parity-check polynomials of cyclic codes. A characterization and an enumeration of Euclidean self-dual and Euclidean self-orthogonal abelian codes in a PIGA are given, which generalize recent analogous results for self-dual cyclic codes. In addition, the structures of reversible and complementary dual abelian codes in a PIGA are established, again extending results on reversible and complementary dual cyclic codes. Finally, asymptotic properties of abelian codes in a PIGA are studied. An upper bound for the minimum distance of abelian codes in a non-semisimple PIGA is given in terms of the minimum distance of abelian codes in semisimple group algebras. Abelian codes in a non-semisimple PIGA are then shown to be asymptotically bad, similar to the case of repeated-root cyclic codes.
引用
收藏
页码:3046 / 3058
页数:13
相关论文
共 24 条
[1]  
Abualrub T, 2006, J FRANKLIN I, V343, P448, DOI 10.1016/j.jfranklin.2006.02.009
[2]  
Benson S., 1997, MATH MAG, V70, P207
[3]  
Berman S. D., 1967, Cybernetics, V3, P17, DOI 10.1007/BF01119999
[4]  
BERMAN SD, 1967, KIBERNETIKA, V3, P31
[5]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[6]   PERMUTATION DECODING OF ABELIAN CODES [J].
CHABANNE, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) :1826-1829
[7]   Split group codes [J].
Ding, CS ;
Kohel, DR ;
Ling, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :485-495
[8]   PRINCIPAL IDEAL GROUP RINGS [J].
FISHER, JL ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1976, 4 (04) :319-325
[9]   Finite-ring combinatorics and MacWilliams' equivalence theorem [J].
Greferath, M ;
Schmidt, SE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) :17-28
[10]   On Self-Dual Cyclic Codes Over Finite Fields [J].
Jia, Yan ;
Ling, San ;
Xing, Chaoping .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) :2243-2251