Inchworm Monte Carlo Method for Open Quantum Systems

被引:15
|
作者
Cai, Zhenning [1 ]
Lu, Jianfeng [2 ]
Yang, Siyao [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Level 4,Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; LINKED DIAGRAMS; TIME EVOLUTION; DYNAMICS; DIMENSION; EQUATIONS; MOTION;
D O I
10.1002/cpa.21888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate in this work a recently proposed diagrammatic quantum Monte Carlo method-the inchworm Monte Carlo method-for open quantum systems. We establish its validity rigorously based on resummation of Dyson series. Moreover, we introduce an integro-differential equation formulation for open quantum systems, which illuminates the mathematical structure of the inchworm algorithm. This new formulation leads to an improvement of the inchworm algorithm by introducing classical deterministic time-integration schemes. The numerical method is validated by applications to the spin-boson model. (c) 2020 Wiley Periodicals, Inc.
引用
收藏
页码:2430 / 2472
页数:43
相关论文
共 50 条
  • [41] Currents and Green's functions of impurities out of equilibrium: Results from inchworm quantum Monte Carlo
    Antipov, Andrey E.
    Dong, Qiaoyuan
    Kleinhenz, Joseph
    Cohen, Guy
    Gull, Emanuel
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [42] Quantum Monte Carlo study of entanglement in quantum spin systems
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 293 - 302
  • [43] Quantum Monte Carlo Study of Entanglement in Quantum Spin Systems
    Tommaso Roscilde
    Paola Verrucchi
    Andrea Fubini
    Stephan Haas
    Valerio Tognetti
    Journal of Low Temperature Physics, 2005, 140 : 293 - 302
  • [44] Determination of phase equilibria in confined systems by open pore cell Monte Carlo method
    Miyahara, Minoru T.
    Tanaka, Hideki
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (08):
  • [45] Fixed-point quantum Monte Carlo method: A combination of density-matrix quantum Monte Carlo method and stochastic unravellings
    Chessex, Romain
    Borrelli, Massimo
    Ottinger, Hans Christian
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [46] TRANSFER-MATRIX METHOD AND MONTE-CARLO SIMULATION IN QUANTUM SPIN SYSTEMS
    SUZUKI, M
    PHYSICAL REVIEW B, 1985, 31 (05) : 2957 - 2965
  • [47] Monte Carlo method for obtaining the ground-state properties of quantum spin systems
    Neirotti, JP
    deOliveira, MJ
    PHYSICAL REVIEW B, 1996, 53 (02): : 668 - 673
  • [48] Intermediately correlated many-electron systems studied by quantum Monte Carlo method
    Yamazaki, M
    Tomita, N
    Nasu, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (03) : 611 - 617
  • [49] Real-Time Simulation of Open Quantum Spin Chains with the Inchworm Method
    Wang, Geshuo
    Cai, Zhenning
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (23) : 8523 - 8540
  • [50] MONTE-CARLO SIMULATION FOR QUANTUM SPIN SYSTEMS
    HOMMA, S
    MATSUDA, H
    OGITA, N
    PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (06): : 1245 - 1247