Inchworm Monte Carlo Method for Open Quantum Systems

被引:15
|
作者
Cai, Zhenning [1 ]
Lu, Jianfeng [2 ]
Yang, Siyao [1 ]
机构
[1] Natl Univ Singapore, Dept Math, Level 4,Block S17,10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; LINKED DIAGRAMS; TIME EVOLUTION; DYNAMICS; DIMENSION; EQUATIONS; MOTION;
D O I
10.1002/cpa.21888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate in this work a recently proposed diagrammatic quantum Monte Carlo method-the inchworm Monte Carlo method-for open quantum systems. We establish its validity rigorously based on resummation of Dyson series. Moreover, we introduce an integro-differential equation formulation for open quantum systems, which illuminates the mathematical structure of the inchworm algorithm. This new formulation leads to an improvement of the inchworm algorithm by introducing classical deterministic time-integration schemes. The numerical method is validated by applications to the spin-boson model. (c) 2020 Wiley Periodicals, Inc.
引用
收藏
页码:2430 / 2472
页数:43
相关论文
共 50 条
  • [31] Self-learning quantum Monte Carlo method in interacting fermion systems
    Xu, Xiao Yan
    Qi, Yang
    Liu, Junwei
    Fu, Liang
    Meng, Zi Yang
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [32] A nonadiabatic quantum mechanical Monte Carlo method
    Mazzone, AM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (07): : 909 - 915
  • [33] IMPROVEMENT OF A QUANTUM MONTE-CARLO METHOD
    MARCU, M
    MULLER, J
    SCHMATZER, FK
    PHYSICS LETTERS A, 1986, 116 (09) : 447 - 450
  • [34] Differential diffusion quantum Monte Carlo method
    Huang, HX
    Yan, C
    Zhang, XJ
    Cao, ZX
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1999, 20 (12): : 1916 - 1920
  • [35] Semistochastic quantum Monte Carlo method and applications
    Umrigar, Cyrus J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [36] Excited states by quantum Monte Carlo method
    Blume, D
    Lewerenz, M
    Whaley, KB
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 133 - 141
  • [37] A Quantum Monte Carlo method at fixed energy
    Farhi, Edward
    Goldstone, Jeffrey
    Gosset, David
    Meyer, Harvey B.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (08) : 1663 - 1673
  • [38] THE MONTE-CARLO METHOD IN QUANTUM MECHANICS
    KING, GW
    PHYSICAL REVIEW, 1950, 78 (03): : 328 - 328
  • [39] Quantum Monte Carlo Method in the Steady State
    Erpenbeck, A.
    Gull, E.
    Cohen, G.
    PHYSICAL REVIEW LETTERS, 2023, 130 (18)
  • [40] MONTE CARLO METHOD IN QUANTUM STATISTICAL MECHANICS
    HANDSCOMB, DC
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (OCT): : 594 - &