Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer

被引:59
作者
Biller, A. M. [1 ]
Stolbov, O. V. [1 ,2 ]
Raikher, Yu. L. [1 ,3 ]
机构
[1] Russian Acad Sci, Inst Continuous Media Mech, Ural Branch, Perm 614013, Russia
[2] Perm Natl Res Polytech Univ, Perm 614990, Russia
[3] Ural Fed Univ, Ekaterinburg 620083, Russia
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 02期
关键词
ELECTRORHEOLOGICAL FLUIDS; ELECTROSTATIC INTERACTIONS; MAGNETIC ELASTOMERS; BEHAVIOR; SUSPENSIONS; FIELD; MODEL; RHEOLOGY;
D O I
10.1103/PhysRevE.92.023202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super) paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Novel highly elastic magnetic materials for dampers and seals:: Part I.: Preparation and characterization of the elastic materials [J].
Abramchuk, S. ;
Kramarenko, E. ;
Stepanov, G. ;
Nikitin, L. V. ;
Filipcsei, G. ;
Khokhlov, A. R. ;
Zrinyi, M. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2007, 18 (11) :883-890
[2]   A MICROSCOPIC MODEL OF ELECTRORHEOLOGY [J].
ADRIANI, PM ;
GAST, AP .
PHYSICS OF FLUIDS, 1988, 31 (10) :2757-2768
[3]  
[Anonymous], ELECTRODYNAMICS CONT
[4]   Mechanical behavior of particle filled elastomers [J].
Bergström, JS ;
Boyce, MC .
RUBBER CHEMISTRY AND TECHNOLOGY, 1999, 72 (04) :633-656
[5]   Modeling of particle interactions in magnetorheological elastomers [J].
Biller, A. M. ;
Stolbov, O. V. ;
Raikher, Yu L. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (11)
[6]  
Bossis G, 2002, LECT NOTES PHYS, V594, P202
[7]   Yield behavior of magnetorheological suspensions [J].
Bossis, G ;
Khuzir, P ;
Lacis, S ;
Volkova, O .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 258 :456-458
[8]  
Bozorth R.M., 1993, Ferromagnetism
[9]   Homogenization-based constitutive models for magnetorheological elastomers at finite strain [J].
Castaneda, P. Ponte ;
Galipeau, E. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (02) :194-215
[10]   ELECTROSTATIC PARTICLE-PARTICLE INTERACTIONS IN ELECTRORHEOLOGICAL FLUIDS [J].
CHEN, Y ;
SPRECHER, AF ;
CONRAD, H .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (11) :6796-6803