Dual Delayed Feedback Provides Sensitivity and Robustness to the NF-κB Signaling Module

被引:40
|
作者
Longo, Diane M. [1 ]
Selimkhanov, Jangir [1 ,2 ]
Kearns, Jeffrey D. [3 ]
Hasty, Jeff [1 ,2 ,4 ,5 ]
Hoffmann, Alexander [2 ,3 ,5 ]
Tsimring, Lev S. [2 ,5 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] San Diego Ctr Syst Biol, La Jolla, CA USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA
关键词
TEMPORAL CONTROL; GENE; OSCILLATIONS; DYNAMICS; P53; SPECIFICITY; NETWORKS; PATHWAY; NOISE; MODEL;
D O I
10.1371/journal.pcbi.1003112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many cellular stress-responsive signaling systems exhibit highly dynamic behavior with oscillatory features mediated by delayed negative feedback loops. What remains unclear is whether oscillatory behavior is the basis for a signaling code based on frequency modulation (FM) or whether the negative feedback control modules have evolved to fulfill other functional requirements. Here, we use experimentally calibrated computational models to interrogate the negative feedback loops that regulate the dynamic activity of the transcription factor NF-kappa B. Linear stability analysis of the model shows that oscillatory frequency is a hard-wired feature of the primary negative feedback loop and not a function of the stimulus, thus arguing against an FM signaling code. Instead, our modeling studies suggest that the two feedback loops may be tuned to provide for rapid activation and inactivation capabilities for transient input signals of a wide range of durations; by minimizing late phase oscillations response durations may be fine-tuned in a graded rather than quantized manner. Further, in the presence of molecular noise the dual delayed negative feedback system minimizes stochastic excursions of the output to produce a robust NF-kappa B response.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Molecular Basis of NF-κB Signaling
    Napetschnig, Johanna
    Wu, Hao
    ANNUAL REVIEW OF BIOPHYSICS, VOL 42, 2013, 42 : 443 - 468
  • [32] NF-κB signaling in inflammation and cancer
    Zhang, Tao
    Ma, Chao
    Zhang, Zhiqiang
    Zhang, Huiyuan
    Hu, Hongbo
    MEDCOMM, 2021, 2 (04): : 618 - 653
  • [33] IKKε signaling:: Not just NF-κB
    Bergmann, Andreas
    CURRENT BIOLOGY, 2006, 16 (15) : R588 - R590
  • [34] Shared principles in NF-κB signaling
    Hayden, Matthew S.
    Ghosh, Sankar
    CELL, 2008, 132 (03) : 344 - 362
  • [35] NF-κB Signaling as a Driver of Ageing
    Osorio, F. G.
    Soria-Valles, C.
    Santiago-Fernandez, O.
    Freije, J. M. P.
    Lopez-Otin, C.
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 326, 2016, 326 : 133 - 174
  • [36] NF-κB signaling and bone resorption
    Abu-Amer, Y.
    OSTEOPOROSIS INTERNATIONAL, 2013, 24 (09) : 2377 - 2386
  • [37] NF-κB Signaling in the Aging Process
    Salminen, Antero
    Kaarniranta, Kai
    JOURNAL OF CLINICAL IMMUNOLOGY, 2009, 29 (04) : 397 - 405
  • [38] Redox and NF-κB signaling in osteoarthritis
    Lepetsos, Panagiotis
    Papavassiliou, Kostas A.
    Papavassiliou, Athanasios G.
    FREE RADICAL BIOLOGY AND MEDICINE, 2019, 132 : 90 - 100
  • [39] Hypoxic regulation of NF-κB signaling
    Cummins, Eoin P.
    Comerford, Katrina M.
    Scholz, Carsten
    Bruning, Ulrike
    Taylor, Cormac T.
    OXYGEN BIOLOGY AND HYPOXIA, 2007, 435 : 479 - 492
  • [40] A mitochondrial checkpoint to NF-κB signaling
    Guilbaud, Emma
    Galluzzi, Lorenzo
    CELL DEATH & DISEASE, 2024, 15 (07):