On the point-particle (Newtonian) limit of the non-linear Hartree equation

被引:92
作者
Fröhlich, J
Tsai, TP
Yau, HT
机构
[1] ETH Honggerberg, CH-8093 Zurich, Switzerland
[2] NYU, Courant Inst, New York, NY 10012 USA
关键词
D O I
10.1007/s002200100579
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the nonlinear Hartree equation describing the dynamics of weakly interacting non-relativistic Bosons. We show that a nonlinear Moller wave operator describing the scattering of a soliton and a wave can be defined. We also consider the dynamics of a soliton in a slowly varying background potential W(epsilonx). We prove that the soliton decomposes into a soliton plus a scattering wave (radiation) Lip to times of order epsilon(-1). To leading order, the center of the soliton follows the trajectory of a classical particle in the potential W(epsilonx).
引用
收藏
页码:223 / 274
页数:52
相关论文
共 21 条
[1]  
FROHLICH J, 2000, IN PRESS J C VIS MAT
[2]   THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS .1. BOREL SUMMABILITY FOR BOUNDED POTENTIALS [J].
GINIBRE, J ;
VELO, G .
ANNALS OF PHYSICS, 1980, 128 (02) :243-285
[3]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[4]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[5]   CLASSICAL FIELD LIMIT OF SCATTERING THEORY FOR NONRELATIVISTIC MANY-BOSON SYSTEMS .1. [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 66 (01) :37-76
[6]  
Ginibre J., 1980, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V33, P363
[7]  
GINIBRE J, 1979, COMMUN MATH PHYS, V68, P45, DOI 10.1007/BF01562541
[8]   CLASSICAL LIMIT FOR QUANTUM-MECHANICAL CORRELATION-FUNCTIONS [J].
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) :265-277
[9]   DECAY-ESTIMATES FOR SCHRODINGER-OPERATORS [J].
JOURNE, JL ;
SOFFER, A ;
SOGGE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (05) :573-604
[10]  
Kato T., 1980, PERTURBATION THEORY