Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application

被引:143
作者
Xu, Jie [1 ]
Wang, Daxiang [1 ]
Yuan, Ye [1 ]
Wei, Wei [1 ]
Duan, Lanlan [1 ]
Wang, Luoxin [1 ]
Bao, Haifeng [1 ]
Xu, Weilin [1 ]
机构
[1] Wuhan Text Univ, Coll Mat Sci & Engn, State Key Lab Cultivat Base New Text Mat & Adv Pr, Wuhan 430200, Peoples R China
关键词
Polypyrrole; Reduced graphene oxide; Fabric electrode; Supercapacitor; ENERGY-STORAGE DEVICES; COTTON FABRICS; ELECTROCHEMICAL PERFORMANCE; CONDUCTING-POLYMER; TEXTILES; COMPOSITES; FILM; SURFACTANTS; CAPACITANCE; CELLULOSE;
D O I
10.1016/j.orgel.2015.05.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible and wearable energy storage devices are strongly demanded to power smart textiles. Herein, reduced graphene oxide (RGO) and polypyrrole (PPy) were deposited on cotton fabric via thermal reduction of GO and chemical polymerization of pyrrole to prepare textile-based electrodes for supercapacitor application. The obtained PPy-RGO-fabric retained good flexibility of textile and was highly conductive, with the conductivity of 1.2 S cm(-1). The PPy-RGO-fabric supercapacitor showed a specific capacitance of 336 F g(-1) and an energy density of 21.1 Wh kg(-1) at a current density of 0.6 mA cm(-2). The RGO sheets served as conductor and framework under the PPy layer, which could facilitate electron transfer between RGO and PPy and restrict the swelling and shrinking of PPy, thus resulting in improved electrochemical properties respect to the PPy-fabric device. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 43 条
[1]   Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor [J].
Babu, K. Firoz ;
Subramanian, S. P. Siva ;
Kulandainathan, M. Anbu .
CARBOHYDRATE POLYMERS, 2013, 94 (01) :487-495
[2]   Graphene materials preparation methods have dramatic influence upon their capacitance [J].
Buglione, Lucia ;
Chng, Elaine Lay Khim ;
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :5-8
[3]   Flexible planar/fiber-architectured supercapacitors for wearable energy storage [J].
Cai, Xin ;
Peng, Ming ;
Yu, Xiao ;
Fu, Yongping ;
Zou, Dechun .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (07) :1184-1200
[4]   Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles [J].
Cherenack, Kunigunde ;
Zysset, Christoph ;
Kinkeldei, Thomas ;
Muenzenrieder, Niko ;
Troester, Gerhard .
ADVANCED MATERIALS, 2010, 22 (45) :5178-+
[5]   Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity [J].
Coskun, Elcin ;
Zaragoza-Contreras, Erasto A. ;
Salavagione, Horacio J. .
CARBON, 2012, 50 (06) :2235-2243
[6]   Smart nanotextiles: A review of materials and applications [J].
Coyle, Shirley ;
Wu, Yanzhe ;
Lau, King-Tong ;
De Rossi, Danilo ;
Wallace, Gordon ;
Diamond, Dermot .
MRS BULLETIN, 2007, 32 (05) :434-442
[7]   Infrared and Raman spectroscopic studies of the electrochemical oxidative degradation of polypyrrole [J].
Ghosh, S ;
Bowmaker, GA ;
Cooney, RP ;
Seakins, JM .
SYNTHETIC METALS, 1998, 95 (01) :63-67
[8]   Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors [J].
Gomez, Humberto ;
Ram, Manoj K. ;
Alvi, Farah ;
Villalba, P. ;
Stefanakos, Elias ;
Kumar, Ashok .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :4102-4108
[9]   Energy and environmental nanotechnology in conductive paper and textiles [J].
Hu, Liangbing ;
Cui, Yi .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6423-6435
[10]   Stretchable, Porous, and Conductive Energy Textiles [J].
Hu, Liangbing ;
Pasta, Mauro ;
La Mantia, Fabio ;
Cui, LiFeng ;
Jeong, Sangmoo ;
Deshazer, Heather Dawn ;
Choi, Jang Wook ;
Han, Seung Min ;
Cui, Yi .
NANO LETTERS, 2010, 10 (02) :708-714