Unsupervised Method based on Probabilistic Neural Network for the Segmentation of Corpus Callosum in MRI Scans

被引:5
作者
Jlassi, Amal [1 ]
ElBedoui, Khaoula [1 ,2 ]
Barhoumi, Walid [1 ,2 ]
Maktouf, Chokri [3 ]
机构
[1] Univ Tunis El Manar, Inst Super Informat, Res Team Intelligent Syst Imaging & Artificial Vi, Lab Rech Informat Modelisat & Traitement Informat, 2 Rue Bayrouni, Ariana 2080, Tunisia
[2] Univ Carthage, Ecole Natl Ingenieurs Carthage, 45 Rue Entrepreneurs, Carthage 2035, Tunisia
[3] Pasteur Inst Tunis, Biophys & Nucl Med Dept, 13 Pl Pasteur, Tunis 1002, Tunisia
来源
VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4 | 2019年
关键词
Corpus Callosum; MRI; Unsupervised Classification; Probabilistic Neural Network; Cluster Validity Index; CHILDREN; TUMOR;
D O I
10.5220/0007400205450552
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we introduce an unsupervised method for the segmentation of the Corpus Callosum (CC) from Magnetic Resonance Imaging (MRI) scans. In fact, in order to extract the CC from sagittal scans in brain MRI, we adopted the Probabilistic Neural Network (PNN) as a clustering technique. Then, we used k-means to obtain the target classes. After that, we introduced a cluster validity measure based on the maximum entropy principle (Vmep), which aims to define dynamically the optimal number of classes. The later criterion was applied in the hidden layer output of the PNN, while varying the number of classes. Finally, we isolated the CC using a spatial-based process. We validated the performance of the proposed method on two challenging datasets using objective metrics (accuracy, sensitivity, Dice coefficient, specificity and Jaccard similarity), and the obtained results proved the superiority of this method against relevant methods from the state of the art.
引用
收藏
页码:545 / 552
页数:8
相关论文
共 25 条
[1]  
Ammor O, 2008, INT ARAB J INF TECHN, V5, P402
[2]  
Ardekani B. A., 2012, MULTIATLAS CORPUS CA
[3]  
Barhoumi W., 2002, Intelligent Knowledge Management. IKOMAT'02. 2002 International Workshop on Intelligent Knowledge Management Techniques. In conjuction with KES'02, P1529
[4]   Difference between smokers and non-smokers in the corpus callosum volume [J].
Choi, Mi-Hyun ;
Lee, Su-Jeong ;
Yang, Jae-Woong ;
Kim, Ji-Hye ;
Choi, Jin-Seung ;
Park, Jang-Yeon ;
Jun, Jae-Hoon ;
Tack, Gye-Rae ;
Lee, Beob-Yi ;
Kim, Hyun-Jun ;
Chung, Soon-Cheol .
NEUROSCIENCE LETTERS, 2010, 485 (01) :71-73
[5]   Corpus callosum morphology in children who stutter [J].
Choo, Ai Leen ;
Chang, Soo-Eun ;
Zengin-Bolatkale, Hatun ;
Ambrose, Nicoline G. ;
Loucks, Torrey M. .
JOURNAL OF COMMUNICATION DISORDERS, 2012, 45 (04) :279-289
[6]   Computational methods for corpus callosum segmentation on MRI: A systematic literature review [J].
Cover, G. S. ;
Herrera, W. G. ;
Bento, M. P. ;
Appenzeller, S. ;
Rittner, L. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 154 :25-35
[7]   Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks [J].
Demirhan, Ayse ;
Toru, Mustafa ;
Guler, Inan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (04) :1451-1458
[8]  
Divya MM., 2014, J ENG RES APPL, V4, P1
[9]  
Farhangi MM, 2016, IEEE ENG MED BIO, P6449, DOI 10.1109/EMBC.2016.7592205
[10]   Negative Associations between Corpus Callosum Midsagittal Area and IQ in a Representative Sample of Healthy Children and Adolescents [J].
Ganjavi, Hooman ;
Lewis, John D. ;
Bellec, Pierre ;
MacDonald, Penny A. ;
Waber, Deborah P. ;
Evans, Alan C. ;
Karama, Sherif .
PLOS ONE, 2011, 6 (05)