Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

被引:137
作者
Yang, Xiao-Jun [1 ,2 ]
Srivastava, H. M. [3 ]
He, Ji-Huan [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China
[2] Qujing Normal Univ, Inst Appl Math, Qujing 655011, Peoples R China
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[5] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[6] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[7] Inst Space Sci, Magurele, Romania
关键词
Heat-conduction equation; Damped wave equation; Local fractional derivatives; Cantor set; NAVIER-STOKES EQUATION; COMPLEX TRANSFORM; CALCULUS; MECHANICS;
D O I
10.1016/j.physleta.2013.04.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems. (c) 2013 Published by Elsevier B.V.
引用
收藏
页码:1696 / 1700
页数:5
相关论文
共 28 条
[1]  
Anastassiou G. A., 2013, ADV APPL MATH APPROX
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   On calculus of local fractional derivatives [J].
Babakhani, A ;
Daftardar-Gejji, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :66-79
[5]  
Baleanu D., 2011, FRACTIONAL DYNAMICS
[6]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[7]   About non-differentiable functions [J].
Ben Adda, F ;
Cresson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :721-737
[8]  
Boothby W. M., 2002, INTRO DIFFERENTIAL M
[9]   Calculation of the tensile and flexural strength of disordered materials using fractional calculus [J].
Carpinteri, A ;
Cornetti, P ;
Kolwankar, KM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :623-632
[10]   On the mechanics of quasi-brittle materials with a fractal microstructure [J].
Carpinteri, A ;
Chiaia, B ;
Cornetti, P .
ENGINEERING FRACTURE MECHANICS, 2003, 70 (16) :2321-2349