Sparsity identification in ultra-high dimensional quantile regression models with longitudinal data

被引:5
|
作者
Gao, Xianli [1 ]
Liu, Qiang [1 ,2 ]
机构
[1] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[2] Beijing Key Lab Megareg Sustainable Dev Modelling, Beijing, Peoples R China
关键词
Ultra-high dimensional model; longitudinal data; quantile regression; variable selection; VARYING COEFFICIENT MODELS; VARIABLE SELECTION; EMPIRICAL LIKELIHOOD; LINEAR-MODELS; CHANGE-POINT;
D O I
10.1080/03610926.2019.1604966
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a variable selection method for quantile regression model in ultra-high dimensional longitudinal data called as the weighted adaptive robust lasso (WAR-Lasso) which is double-robustness. We derive the consistency and the model selection oracle property of WAR-Lasso. Simulation studies show the double-robustness of WAR-Lasso in both cases of heavy-tailed distribution of the errors and the heavy contaminations of the covariates. WAR-Lasso outperform other methods such as SCAD and etc. A real data analysis is carried out. It shows that WAR-Lasso tends to select fewer variables and the estimated coefficients are in line with economic significance.
引用
收藏
页码:4712 / 4736
页数:25
相关论文
共 50 条
  • [31] Weighted quantile regression for longitudinal data
    Xiaoming Lu
    Zhaozhi Fan
    Computational Statistics, 2015, 30 : 569 - 592
  • [32] Efficient quantile marginal regression for longitudinal data with dropouts
    Cho, Hyunkeun
    Hong, Hyokyoung Grace
    Kim, Mi-Ok
    BIOSTATISTICS, 2016, 17 (03) : 561 - 575
  • [33] A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA
    Mu, Yunming
    Wei, Ying
    STATISTICA SINICA, 2009, 19 (03) : 1137 - 1153
  • [34] Smoothed tensor quantile regression estimation for longitudinal data
    Ke, Baofang
    Zhao, Weihua
    Wang, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 178
  • [35] Quantile regression of longitudinal data with informative observation times
    Chen, Xuerong
    Tang, Niansheng
    Zhou, Yong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 144 : 176 - 188
  • [36] Pursuit of dynamic structure in quantile additive models with longitudinal data
    Cui, Xia
    Zhao, Weihua
    Lian, Heng
    Liang, Hua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 130 : 42 - 60
  • [37] ADMM for High-Dimensional Sparse Penalized Quantile Regression
    Gu, Yuwen
    Fan, Jun
    Kong, Lingchen
    Ma, Shiqian
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (03) : 319 - 331
  • [38] Quantile regression for longitudinal data
    Koenker, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 74 - 89
  • [39] Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations
    Bao Hua Wang
    Han Ying Liang
    Acta Mathematica Sinica, English Series, 2023, 39 : 1701 - 1726
  • [40] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826