A note on the principle of preservation of probability and probability density evolution equation

被引:94
作者
Chen, Jian-Bing [1 ]
Li, Jie [1 ]
机构
[1] Tongji Univ, Sch Civil Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Principle of preservation of probability; Probability density evolution equation; State space description; Random event description; Fokker-Planck equation; Generalized density evolution equation; NONLINEAR STOCHASTIC STRUCTURES; RELIABILITY; DYNAMICS; SYSTEM;
D O I
10.1016/j.probengmech.2008.01.004
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper aims at clarifying the physical sense of the principle of preservation of probability. Using this principle as a unified fundamental, (lie probability density evolution equations, including the Liouville, Fokker-Planck and the Dostupov-Pugachev equation, are derived from the physical point of view. Further, it is pointed Out that there exist different descriptions of this principle and, from these different descriptions, combining with the Eulerian or Lagrangian description of the associated dynamical system will lead to different probability density evolution equations. Particularly, when both the principle of preservation of probability and the motion of the dynamical systems are viewed from the Lagrangian description, we are led to the generalized probability density evolution equation. In contrast to the state space description, where the transition of probability is treated in different ways based oil their different phenomenological origins, the essential point of the random event description is to view the transition of probability in a unified way because they result from file same Source of random events. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 28 条