RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS

被引:18
作者
Barros, A. [1 ]
Batista, R. [1 ]
Ribeiro, E., Jr. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
D O I
10.1215/ijm/1399395831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that either, a Euclidean space R-n, or a standard sphere S-n, is the unique manifold with nonnegative scalar curvature which carries a structure of a gradient almost Ricci soliton, provided this gradient is a non trivial conformal vector field. Moreover, in the spherical case the field is given by the first eigenfunction of the Laplacian. Finally, we shall show that a compact locally conformally flat almost Ricci soliton is isometric to Euclidean sphere S-n provided an integral condition holds.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 10 条
[1]  
[Anonymous], ARXIVMATH0211159
[2]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[3]   Compact gradient shrinking Ricci solitons with positive curvature operator [J].
Cao, Xiaodong .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) :425-433
[4]   Generalized quasi-Einstein manifolds with harmonic Weyl tensor [J].
Catino, Giovanni .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :751-756
[5]  
HAMILTON R.S, 1995, SURVEYS DIFFERENTIAL, VII, P7
[6]  
Obata M., 1970, J DIFFER GEOM, V4, P53
[7]  
Pigola S, 2011, ANN SCUOLA NORM-SCI, V10, P757
[9]   EINSTEIN SPACES ADMITTING A ONE-PARAMETER GROUP OF CONFORMAL TRANSFORMATIONS [J].
YANO, K ;
NAGANO, T .
ANNALS OF MATHEMATICS, 1959, 69 (02) :451-461
[10]  
Yano K., 1970, INTEGRAL FORMULAS RI