A NITSCHE-BASED METHOD FOR UNILATERAL CONTACT PROBLEMS: NUMERICAL ANALYSIS

被引:87
|
作者
Chouly, Franz [1 ]
Hild, Patrick [2 ]
机构
[1] Univ Franche Comte, UMR CNRS 6623, Math Lab, F-25030 Besancon, France
[2] Univ Toulouse 3, UMR CNRS 5219, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
unilateral contact; finite elements; Nitsche's method; FINITE-ELEMENT METHODS; PRIORI ERROR ESTIMATE; SIGNORINI PROBLEM; VARIATIONAL-INEQUALITIES; BOUNDARY-CONDITIONS; LINEAR ELASTICITY; SOLID MECHANICS; APPROXIMATIONS; CONVERGENCE; SIMULATION;
D O I
10.1137/12088344X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Nitsche-based finite element discretization of the unilateral contact problem in linear elasticity. It features a weak treatment of the nonlinear contact conditions through a consistent penalty term. Without any additional assumption on the contact set, we can prove theoretically its fully optimal convergence rate in the H-1(Omega)-norm for linear finite elements in two dimensions, which is O(h(1/2 + nu)) when the solution lies in H3/2 + nu(Omega), 0 < nu <= 1/2. An interest of the formulation is that, as opposed to Lagrange multiplier-based methods, no other unknown is introduced and no discrete inf-sup condition needs to be satisfied.
引用
收藏
页码:1295 / 1307
页数:13
相关论文
共 50 条
  • [1] Nitsche-based models for the unilateral contact of plates
    Fabre, Mathieu
    Pozzolini, Cedric
    Renard, Yves
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S941 - S967
  • [2] Nitsche-based material point method for large deformation frictional contact problems
    Zhang, Kun
    Shen, Shui-Long
    Wu, Hui
    Zhou, Annan
    COMPUTATIONAL PARTICLE MECHANICS, 2024,
  • [3] Nitsche's method for unilateral contact problems
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 189 - 204
  • [4] A Nitsche-Based Element-Free Galerkin Method for Semilinear Elliptic Problems
    Zhang, Tao
    Li, Xiaolin
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (01) : 24 - 46
  • [5] Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems
    Chouly F.
    Renard Y.
    Advanced Modeling and Simulation in Engineering Sciences, 5 (1)
  • [6] A Nitsche-based formulation for fluid-structure interactions with contact
    Burman, Erik
    Fernández, Miguel A.
    Frei, Stefan
    ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54 (02): : 531 - 564
  • [7] A Nitsche-based formulation for fluid-structure interactions with contact
    Burman, Erik
    Fernandez, Miguel A.
    Frei, Stefan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02): : 531 - 564
  • [8] A Nitsche-based domain decomposition method for hypersingular integral equations
    Franz Chouly
    Norbert Heuer
    Numerische Mathematik, 2012, 121 : 705 - 729
  • [9] A Nitsche-based domain decomposition method for hypersingular integral equations
    Chouly, Franz
    Heuer, Norbert
    NUMERISCHE MATHEMATIK, 2012, 121 (04) : 705 - 729
  • [10] ON NITSCHE'S METHOD FOR ELASTIC CONTACT PROBLEMS
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : B425 - B446