Multitask Learning of Height and Semantics From Aerial Images

被引:35
作者
Carvalho, Marcela [1 ]
Le Saux, Bertrand [1 ]
Trouve-Peloux, Pauline [1 ]
Champagnat, Frederic [1 ]
Almansa, Andres [2 ]
机构
[1] Univ Paris Saclay, ONERA, DTIS, F-91123 Palaiseau, France
[2] Univ Paris 05, MAP5, F-75006 Paris, France
关键词
Semantics; Task analysis; Training; Estimation; Predictive models; Decoding; Land surface; Aerial imagery; deep learning; multitask learning; neural networks; semantic segmentation; single view depth estimation; DEEP; CLASSIFICATION;
D O I
10.1109/LGRS.2019.2947783
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Aerial or satellite imagery is a great source for land surface analysis, which might yield land-use maps or elevation models. In this letter, we present a neural network framework for learning semantics and local height together. We show how this joint multitask learning benefits to each task on the large data set of the 2018 Data Fusion Contest. Moreover, our framework also yields an uncertainty map that allows assessing the prediction of the model. Code is available at https://github.com/marcelampc/mtl_aerial_images
引用
收藏
页码:1391 / 1395
页数:5
相关论文
共 50 条
  • [31] 4T-Net: Multitask deep learning for nuclear analysis from pathology images
    Vo, Vi Thi-Tuong
    Noh, Myung-Giun
    Kim, Soo-Hyung
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 73031 - 73053
  • [32] Learning and Sharing: A Multitask Genetic Programming Approach to Image Feature Learning
    Bi, Ying
    Xue, Bing
    Zhang, Mengjie
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 218 - 232
  • [33] A Novel Contrastive Learning Model for Aerial Images
    Zhen, Taihang
    Chen, Kai
    Gao, Yang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [34] Ship velocity estimation in SAR images using multitask deep learning
    Heiselberg, Peder
    Sorensen, Kristian
    Heiselberg, Henning
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 288
  • [35] Vehicle Detection from Aerial Images Using Deep Learning: A Comparative Study
    Ammar, Adel
    Koubaa, Anis
    Ahmed, Mohanned
    Saad, Abdulrahman
    Benjdira, Bilel
    [J]. ELECTRONICS, 2021, 10 (07)
  • [36] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [37] Efficient Multitask Multiple Kernel Learning With Application to Cancer Research
    Rahimi, Arezou
    Gonen, Mehmet
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 8716 - 8728
  • [38] Mood Prediction Based on Calendar Events Using Multitask Learning
    Tateyama, Naoki
    Fukui, Rui
    Warisawa, Shin'ichi
    [J]. IEEE ACCESS, 2022, 10 : 79747 - 79759
  • [39] Leveraging large-scale aerial data for accurate urban rooftop solar potential estimation via multitask learning
    Boccalatte, Alessia
    Jha, Ankit
    Chanussot, Jocelyn
    [J]. SOLAR ENERGY, 2025, 290
  • [40] Compositional Semantics Network With Multi-Task Learning for Pun Location
    Mao, Junyu
    Wang, Rongbo
    Huang, Xiaoxi
    Chen, Zhiqun
    [J]. IEEE ACCESS, 2020, 8 : 44976 - 44982