Multitask Learning of Height and Semantics From Aerial Images

被引:35
|
作者
Carvalho, Marcela [1 ]
Le Saux, Bertrand [1 ]
Trouve-Peloux, Pauline [1 ]
Champagnat, Frederic [1 ]
Almansa, Andres [2 ]
机构
[1] Univ Paris Saclay, ONERA, DTIS, F-91123 Palaiseau, France
[2] Univ Paris 05, MAP5, F-75006 Paris, France
关键词
Semantics; Task analysis; Training; Estimation; Predictive models; Decoding; Land surface; Aerial imagery; deep learning; multitask learning; neural networks; semantic segmentation; single view depth estimation; DEEP; CLASSIFICATION;
D O I
10.1109/LGRS.2019.2947783
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Aerial or satellite imagery is a great source for land surface analysis, which might yield land-use maps or elevation models. In this letter, we present a neural network framework for learning semantics and local height together. We show how this joint multitask learning benefits to each task on the large data set of the 2018 Data Fusion Contest. Moreover, our framework also yields an uncertainty map that allows assessing the prediction of the model. Code is available at https://github.com/marcelampc/mtl_aerial_images
引用
收藏
页码:1391 / 1395
页数:5
相关论文
共 50 条
  • [1] DPSNet: Multitask Learning Using Geometry Reasoning for Scene Depth and Semantics
    Zhang, Junning
    Su, Qunxing
    Tang, Bo
    Wang, Cheng
    Li, Yining
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 2710 - 2721
  • [2] Height Prediction and Refinement From Aerial Images With Semantic and Geometric Guidance
    Elhousni, Mahdi
    Zhang, Ziming
    Huang, Xinming
    IEEE ACCESS, 2021, 9 : 145638 - 145647
  • [3] HECR-Net: Height-Embedding Context Reassembly Network for Semantic Segmentation in Aerial Images
    Liu, Wenjie
    Zhang, Wenkai
    Sun, Xian
    Guo, Zhi
    Fu, Kun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 9117 - 9131
  • [4] Gated Feature Aggregation for Height Estimation From Single Aerial Images
    Xing, Siyuan
    Dong, Qiulei
    Hu, Zhanyi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Highway Crack Segmentation From Unmanned Aerial Vehicle Images Using Deep Learning
    Hong, Zhonghua
    Yang, Fan
    Pan, Haiyan
    Zhou, Ruyan
    Zhang, Yun
    Han, Yanling
    Wang, Jing
    Yang, Shuhu
    Chen, Peng
    Tong, Xiaohua
    Liu, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Multitask Learning of Alfalfa Nutritive Value From UAV-Based Hyperspectral Images
    Feng, Luwei
    Zhang, Zhou
    Ma, Yuchi
    Sun, Yazhou
    Du, Qingyun
    Williams, Parker
    Drewry, Jessica
    Luck, Brian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Semantic Segmentation of Remote Sensing Images With Self-Supervised Multitask Representation Learning
    Li, Wenyuan
    Chen, Hao
    Shi, Zhenwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6438 - 6450
  • [8] Learning From Synthetic Images via Active Pseudo-Labeling
    Song, Liangchen
    Xu, Yonghao
    Zhang, Lefei
    Du, Bo
    Zhang, Qian
    Wang, Xinggang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6452 - 6465
  • [9] Multitask Learning for Ship Detection From Synthetic Aperture Radar Images
    Zhang, Xin
    Huo, Chunlei
    Xu, Nuo
    Jiang, Hangzhi
    Cao, Yong
    Ni, Lei
    Pan, Chunhong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8048 - 8062
  • [10] Boundary-Oriented Binary Building Segmentation Model With Two Scheme Learning for Aerial Images
    Lee, Kyungsu
    Kim, Jun Hee
    Lee, Haeyun
    Park, Juhum
    Choi, Jihwan P.
    Hwang, Jae Youn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60