A set of squares without arithmetic progressions

被引:5
|
作者
Gyarmati, Katalin [1 ]
Ruzsa, Imre Z. [2 ]
机构
[1] Eotvos Lorand Univ, Algebra & Number Theory Dept, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
arithmetic progression;
D O I
10.4064/aa155-1-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [1] A uniform set with fewer than expected arithmetic progressions of length 4
    Gowers, W. T.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 756 - 767
  • [2] A uniform set with fewer than expected arithmetic progressions of length 4
    W. T. Gowers
    Acta Mathematica Hungarica, 2020, 161 : 756 - 767
  • [3] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [4] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [5] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [6] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [7] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03): : 965 - 986
  • [8] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [9] Discrepancy in modular arithmetic progressions
    Fox, Jacob
    Xu, Max Wenqiang
    Zhou, Yunkun
    COMPOSITIO MATHEMATICA, 2022, 158 (11) : 2082 - 2108
  • [10] On arithmetic progressions on Pellian equations
    Dujella, A.
    Petho, A.
    Tadic, P.
    ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) : 29 - 38