Hybridizing Euclidean and Hyperbolic Similarities for Attentively Refining Representations in Semantic Segmentation of Remote Sensing Images

被引:14
作者
Li, Xin [1 ,2 ]
Xu, Feng [1 ,2 ]
Liu, Fan [1 ,2 ]
Xia, Runliang [3 ]
Tong, Yao [4 ]
Li, Linyang [5 ]
Xu, Zhennan [1 ,2 ]
Lyu, Xin [1 ,2 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
[2] Hohai Univ, Key Lab Water Big Data Technol, Minist Water Resources, Nanjing 211100, Peoples R China
[3] Yellow River Inst Hydraul Res, Informat Engn Ctr, Zhengzhou 450003, Peoples R China
[4] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450000, Peoples R China
[5] PLA Informat Engn Univ, Surveying & Mapping Inst, Zhengzhou 450003, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism (AM); hyperbolic geometry; semantic segmentation; similarity-hybrid attention;
D O I
10.1109/LGRS.2022.3225713
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Attention mechanisms (AMs) have revolutionized the semantic segmentation network in interpreting remote sensing images (RSIs) due to their amazing ability in establishing contextual dependencies. Nevertheless, due to the complex scenes and diverse objects in RSIs, a variety of details and correlations are not available in Euclidean space. Therefore, a similarity-hybrid attention module (SHAM) is devised to attentively learn the hyperbolic and Euclidean attention maps between any two positions, followed by a weighted elementwise summation. The hybrid attention maps posses latent geometric properties of both Euclidean and hyperboloid. Taking commonly used fully convolutional network (FCN) as baseline, hybrid attention-enhanced neural network (HAENet) that embeds SHAM is presented. Experiments on International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and DeepGlobe benchmarks reveal its superiority to comparative methods. In addition, the ablation study validates the effectiveness of SHAM compared with other attention modules.
引用
收藏
页数:5
相关论文
共 18 条
[1]   A General Survey on Attention Mechanisms in Deep Learning [J].
Brauwers, Gianni ;
Frasincar, Flavius .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) :3279-3298
[2]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[3]  
Chen B., 2022, HYPERBOLIC UNCERTAIN
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images [J].
Ding, Lei ;
Lin, Dong ;
Lin, Shaofu ;
Zhang, Jing ;
Cui, Xiaojie ;
Wang, Yuebin ;
Tang, Hao ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images [J].
Ding, Lei ;
Tang, Hao ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01) :426-435
[7]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[8]  
Ganea OE, 2018, ADV NEUR IN, V31
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[10]   Hybridizing Cross-Level Contextual and Attentive Representations for Remote Sensing Imagery Semantic Segmentation [J].
Li, Xin ;
Xu, Feng ;
Xia, Runliang ;
Lyu, Xin ;
Gao, Hongmin ;
Tong, Yao .
REMOTE SENSING, 2021, 13 (15)