AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response

被引:9
作者
Bryant, William A. [1 ]
Sternberg, Michael J. E. [1 ]
Pinney, John W. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
来源
BMC SYSTEMS BIOLOGY | 2013年 / 7卷
基金
英国生物技术与生命科学研究理事会;
关键词
Metabolic networks; Simulated annealing; High-throughput data; Stress response; Network analysis; GENE-EXPRESSION; RECONSTRUCTION; INTEGRATION; PATHWAYS; ENZYMES; KEGG;
D O I
10.1186/1752-0509-7-26
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, for instance by testing for KEGG pathway enrichment in sets of upregulated genes. However, the increasing availability of species-specific metabolic models provides the opportunity to analyse these data in a more objective, system-wide manner. Results: Here we introduce ambient (Active Modules for Bipartite Networks), a simulated annealing approach to the discovery of metabolic subnetworks (modules) that are significantly affected by a given genetic or environmental change. The metabolic modules returned by ambient are connected parts of the bipartite network that change coherently between conditions, providing a more detailed view of metabolic changes than standard approaches based on pathway enrichment. Conclusions: ambient is an effective and flexible tool for the analysis of high-throughput data in a metabolic context. The same approach can be applied to any system in which reactions (or metabolites) can be assigned a score based on some biological observation, without the limitation of predefined pathways. A Python implementation of ambient is available at http://www.theosysbio.bio.ic.ac.uk/ambient.
引用
收藏
页数:11
相关论文
共 15 条
[1]   KEGG spider: interpretation of genomics data in the context of the global gene metabolic network [J].
Antonov, Alexey V. ;
Dietmann, Sabine ;
Mewes, Hans W. .
GENOME BIOLOGY, 2008, 9 (12)
[2]   Graph-based iterative Group Analysis enhances microarray interpretation [J].
Breitling, R ;
Amtmann, A ;
Herzyk, P .
BMC BIOINFORMATICS, 2004, 5 (1)
[3]  
Caspi R, 2008, NUCLEIC ACIDS RES, V36, pD623, DOI [10.1093/nar/gkm900, 10.1093/nar/gkt1103]
[4]   Inferring meaningful pathways in weighted metabolic networks [J].
Croes, D ;
Couche, F ;
Wodak, SJ ;
van Helden, J .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 356 (01) :222-236
[5]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[6]   A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information [J].
Feist, Adam M. ;
Henry, Christopher S. ;
Reed, Jennifer L. ;
Krummenacker, Markus ;
Joyce, Andrew R. ;
Karp, Peter D. ;
Broadbelt, Linda J. ;
Hatzimanikatis, Vassily ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3
[7]   PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways [J].
Goffard, Nicolas ;
Frickey, Tancred ;
Weiller, Georg .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W335-W339
[8]   High-throughput generation, optimization and analysis of genome-scale metabolic models [J].
Henry, Christopher S. ;
DeJongh, Matthew ;
Best, Aaron A. ;
Frybarger, Paul M. ;
Linsay, Ben ;
Stevens, Rick L. .
NATURE BIOTECHNOLOGY, 2010, 28 (09) :977-U22
[9]   A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology [J].
Herrgard, Markus J. ;
Swainston, Neil ;
Dobson, Paul ;
Dunn, Warwick B. ;
Arga, K. Yalcin ;
Arvas, Mikko ;
Bluethgen, Nils ;
Borger, Simon ;
Costenoble, Roeland ;
Heinemann, Matthias ;
Hucka, Michael ;
Le Novere, Nicolas ;
Li, Peter ;
Liebermeister, Wolfram ;
Mo, Monica L. ;
Oliveira, Ana Paula ;
Petranovic, Dina ;
Pettifer, Stephen ;
Simeonidis, Evangelos ;
Smallbone, Kieran ;
Spasic, Irena ;
Weichart, Dieter ;
Brent, Roger ;
Broomhead, David S. ;
Westerhoff, Hans V. ;
Kirdar, Betuel ;
Penttila, Merja ;
Klipp, Edda ;
Palsson, Bernhard O. ;
Sauer, Uwe ;
Oliver, Stephen G. ;
Mendes, Pedro ;
Nielsen, Jens ;
Kell, Douglas B. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1155-1160
[10]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218