Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome

被引:71
作者
Crooke, Stephen N. [1 ]
Ovsyannikova, Inna G. [1 ]
Kennedy, Richard B. [1 ]
Poland, Gregory A. [1 ]
机构
[1] Mayo Clin, Mayo Clin Vaccine Res Grp, Guggenheim Bldg 611C,200 First St SW, Rochester, MN 55905 USA
关键词
RESPIRATORY SYNDROME CORONAVIRUS; CLASS-I BINDING; SARS CORONAVIRUS; NEUTRALIZING EPITOPES; PROTECTIVE IMMUNITY; ANTIBODY-RESPONSES; RECEPTOR-BINDING; SPIKE PROTEIN; VACCINE; PREDICTION;
D O I
10.1038/s41598-020-70864-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.
引用
收藏
页数:15
相关论文
共 81 条
[51]  
Peng YC, 2020, NAT IMMUNOL, V21, P1336, DOI [10.1038/s41590-020-0782-6, 10.1101/2020.06.05.134551]
[52]   UCSF chimera - A visualization system for exploratory research and analysis [J].
Pettersen, EF ;
Goddard, TD ;
Huang, CC ;
Couch, GS ;
Greenblatt, DM ;
Meng, EC ;
Ferrin, TE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (13) :1605-1612
[53]   Tortoises, hares, and vaccines: A cautionary note for SARS-CoV-2 vaccine development [J].
Poland, Gregory A. .
VACCINE, 2020, 38 (27) :4219-4220
[54]   Antibody responses to individual proteins of SARS coronavirus and their neutralization activities [J].
Qiu, MF ;
Shi, YL ;
Guo, ZB ;
Chen, ZL ;
He, RQ ;
Chen, RS ;
Zhou, DS ;
Dai, EH ;
Wang, XY ;
Si, BY ;
Song, YJ ;
Li, JX ;
Yang, L ;
Wang, J ;
Wang, HX ;
Pang, X ;
Zhai, JH ;
Du, ZM ;
Liu, Y ;
Zhang, Y ;
Li, LH ;
Wang, J ;
Sun, B ;
Yang, RF .
MICROBES AND INFECTION, 2005, 7 (5-6) :882-889
[55]   Structure of a SARS coronavirus-derived peptide bound to the human major histocompatibility complex class I molecule HLA-B*1501 [J].
Roder, Gustav ;
Kristensen, Ole ;
Kastrup, Jette S. ;
Buus, Soren ;
Gajhede, Michael .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2008, 64 :459-462
[56]   Crystal structures of two peptide-HLA-B*1501 complexes; structural characterization of the HLA-B62 supertype [J].
Roder, Gustav ;
Blicher, Thomas ;
Justesen, Sune ;
Johannesen, Birthe ;
Kristensen, Ole ;
Kastrup, Jette ;
Buus, Soren ;
Gajhede, Michael .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1300-1310
[57]  
Seema M, 2020, PREPRINT
[58]  
SETTE A, 1994, J IMMUNOL, V153, P5586
[59]  
Srivastava S., 2020, PREPRINT, DOI [10.1101/2020.04.01.019299, DOI 10.1101/2020.04.01.019299]
[60]   Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine [J].
Tai, Wanbo ;
He, Lei ;
Zhang, Xiujuan ;
Pu, Jing ;
Voronin, Denis ;
Jiang, Shibo ;
Zhou, Yusen ;
Du, Lanying .
CELLULAR & MOLECULAR IMMUNOLOGY, 2020, 17 (06) :613-620