Evolving Cellular Automata to Segment Hyperspectral Images Using Low Dimensional Images for Training

被引:2
|
作者
Priego, B. [1 ]
Bellas, Francisco [1 ]
Duro, Richard J. [1 ]
机构
[1] Univ A Coruna, Integrated Grp Engn Res, La Coruna, Spain
来源
BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II | 2015年 / 9108卷
关键词
Hyperspectral image segmentation; Cellular automata; Evolution; CLASSIFICATION;
D O I
10.1007/978-3-319-18833-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a hyperspectral image segmentation approach that has been developed to address the issues of lack of adequately labeled images, the computational load induced when using hyperspectral images in training and, especially, the adaptation of the level of segmentation to the desires of the users. The algorithm used is based on evolving cellular automata where the fitness is established based on the use of synthetic RGB images that are constructed on-line according to a set of parameters that define the type of segmentation the user wants. A series of segmentation experiments over real hyperspectral images are presented to show this adaptability and how the performance of the algorithm improves over other state of the art approaches found in the literature on the subject.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [41] Analysis of Hyperspectral Images Using Supervised Learning Techniques
    Bilius, Laura-Bianca
    Pentiuc, Stefan-Gheorghe
    Brie, David
    Miron, Sebastian
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 675 - 680
  • [42] Segmentation and classification of hyperspectral images using watershed transformation
    Tarabalka, Y.
    Chanussot, J.
    Benediktsson, J. A.
    PATTERN RECOGNITION, 2010, 43 (07) : 2367 - 2379
  • [43] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [44] SUPERRESOLUTION OF HYPERSPECTRAL IMAGES USING BACKPROPAGATION NEURAL NETWORKS
    Mianji, Fereidoun A.
    Zhang, Ye
    Babakhani, Asad
    PROCEEDINGS OF INDS '09: SECOND INTERNATIONAL WORKSHOP ON NONLINEAR DYNAMICS AND SYNCHRONIZATION 2009, 2009, 4 : 168 - +
  • [45] A Secret Sharing Scheme for Digital Images Based on Cellular Automata and Boolean Functions
    Martin del Rey, Angel
    Rodriguez Sanchez, Gerardo
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 1200 - +
  • [46] Application of the Cellular Automata for Obtaining Pitting Images during Simulation Process of Their Growth
    Rusyn, Bohdan
    Tors'ka, Roxana
    Kobasyar, Mykhailo
    MAN-MACHINE INTERACTIONS 3, 2014, 242 : 299 - 306
  • [47] Analysis of evolving processes in pulmonary nodules using a sequence of three-dimensional thoracic images
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kusumoto, M
    Kakinuma, R
    Mori, K
    Nishiyama, H
    Eguchi, K
    Kaneko, A
    Moriyama, N
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 1890 - 1901
  • [48] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [49] THEMATIC CLASSIFICATION OF HYPERSPECTRAL IMAGES USING CONJUGACY INDICATOR
    Fursov, V. A.
    Bibikov, S. A.
    Bajda, O. A.
    COMPUTER OPTICS, 2014, 38 (01) : 154 - 158
  • [50] Graph Embedding via High Dimensional Model Representation for Hyperspectral Images
    Taskin, Gulsen
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60