Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces

被引:259
作者
Shi, Run [1 ]
Guo, Jiahao [1 ,2 ]
Zhang, Xuerui [1 ,2 ]
Waterhouse, Geoffrey I. N. [3 ]
Han, Zhaojun [4 ]
Zhao, Yunxuan [1 ,2 ]
Shang, Lu [1 ]
Zhou, Chao [1 ]
Jiang, Lei [5 ]
Zhang, Tierui [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Auckland, Sch Chem Sci, Auckland 1142, New Zealand
[4] CSIRO Mfg, Sydney, NSW 2070, Australia
[5] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC REDUCTION; HYDROGEN EVOLUTION; CONVERSION; WATER; NANOPARTICLES; PERFORMANCE; ELECTRODES; CATALYSIS;
D O I
10.1038/s41467-020-16847-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) represents a very promising future strategy for synthesizing carbon-containing chemicals in a more sustainable way. In spite of great progress in electrocatalyst design over the last decade, the critical role of wettability-controlled interfacial structures for CO2RR remains largely unexplored. Here, we systematically modify the structure of gas-liquid-solid interfaces over a typical Au/C gas diffusion electrode through wettability modification to reveal its contribution to interfacial CO2 transportation and electroreduction. Based on confocal laser scanning microscopy measurements, the Cassie-Wenzel coexistence state is demonstrated to be the ideal three phase structure for continuous CO2 supply from gas phase to Au active sites at high current densities. The pivotal role of interfacial structure for the stabilization of the interfacial CO2 concentration during CO2RR is quantitatively analysed through a newly-developed in-situ fluorescence electrochemical spectroscopic method, pinpointing the necessary CO2 mass transfer conditions for CO2RR operation at high current densities.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol [J].
Albo, Jonathan ;
Irabien, Angel .
JOURNAL OF CATALYSIS, 2016, 343 :232-239
[2]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[3]   Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye [J].
Amao, Y ;
Nakamura, N .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 100 (03) :347-351
[4]  
[Anonymous], CHEM LETT, DOI DOI 10.1246/cl.1985.1695
[5]   Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry [J].
Burdyny, Thomas ;
Graham, Percival J. ;
Pang, Yuanjie ;
Cao-Thang Dinh ;
Liu, Min ;
Sargent, Edward H. ;
Sinton, David .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :4031-4040
[6]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[7]  
Cai Z., 2018, NANO RES, V12, P345, DOI [10.1007/x12274-018-2221-7, DOI 10.1007/X12274-018-2221-7]
[8]   THE SOLUBILITY OF CARBON-DIOXIDE IN WATER AT LOW-PRESSURE [J].
CARROLL, JJ ;
SLUPSKY, JD ;
MATHER, AE .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1991, 20 (06) :1201-1209
[9]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[10]  
Cussler E. L., 2009, DIFFUSION MASS TRANS, P238